A Car–Parrinello molecular dynamics simulation has been performed on fully deuterated liquid methanol. The results are compared with the latest available experimental and theoretical data. It is shown that the liquid is aggregated in chains of hydrogen bonded molecules. The structure of the aggregates is characterized and it is found that the dynamics includes a fast and a slow regime. The weak H bond formed by the methyl group hydrogens and oxygen atom of surrounding molecules has been characterized. The importance of inductive effects is shown and discussed in terms of maximally localized Wannier function centers. Special attention is devoted to clarify how the molecular dipole moment depends on the number of H bonds formed by each molecule. The IR spectrum is computed and analyzed in terms of H-bond interactions. Insights on the short time dynamics and on the H-bond network are illustrated.
An analysis of the conformational properties and hydrogen bonding in the condensed phases of glycerol is reported using the same model as adopted in Part I (Phys. Chem. Chem. Phys., 1999, 1, 871). Structural properties of the liquid and glassy states are analyzed in relation to the molecular backbone conformation of the glycerol molecule. The e †ects of hydrogen bonding and of temperature on the conformational distribution are analyzed. The structural and dynamical properties of hydrogen bonding in glycerol are also investigated. The results are consistent with available experimental observations and clarify many important and interrelated aspects of the microscopic structure of liquid, glassy and crystalline phases of glycerol.
Using a model potential function we have performed a molecular dynamics simulation of several static and dynamical properties of glycerol in the crystal, glass and liquid phases. Comparison with available experimental data shows an excellent agreeent and proves the validity of the potential model used. For the calculation of the molar speciÐc heat of the liquid and of the glass we have developed a theoretical approach which takes into account the contributions of the conformational structure energy and of the vibrational energy computed using the BoseÈEinstein statistics.
Using an improved DFT calculation of the vibrational frequencies based on the B3-LYP functional and the 6-31G* basis set, the infrared, Raman, neutron inelastic and luminescence spectra of C 60 are rediscussed, and a revised assignment of all the silent modes is obtained and compared with the most recent assignments.
A DFT calculation of the vibrational frequencies of the infrared and Raman intensities of C70 is reported
using the B3-LYP exchange and correlation functional and the 6-31G* basis set. It's shown that a very good
fit to the known infrared and Raman active modes is obtained. Using the calculated frequencies as a base
guide, a full assignment of the C70 vibrational frequncies is proposed. A correlation between the C70 and the
C60 normal modes of vibrations is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.