Many in vitro studies demonstrated significant biological effects of trans-resveratrol. Thus, understanding the rate of intestinal absorption and metabolization in vivo of trans-resveratrol is the prerequisite to evaluate its potential health impact. Bioavailability studies mainly in animals or in humans using the pure compound at very high doses were performed. In this work, trans-resveratrol bioavailability from a moderate consumption of red wine in 25 healthy humans has been studied by three different experiments. The wine ingestion was associated to three different dietary approaches: fasting, a standard meal, a meal with high and low amount of lipids. Trans-resveratrol 3- and 4'-glucuronides were synthesized, purified, and characterized as pure standards. Bioavailability data were obtained by measuring the concentration of free, 3-glucuronide and 4'-glucuronide trans-resveratrol by high-performance liquid chromatography (HPLC), both with ultraviolet (UV) and mass spectrometry (MS) detection, in serum samples taken at different times after red wine administration. Free trans-resveratrol was found, in trace amounts, only in some serum samples collected 30 min after red wine ingestion while after longer times resveratrol glucuronides predominated. Trans-resveratrol bioavailability was shown to be independent from the meal or its lipid content. The finding in human serum of trans-resveratrol glucuronides, rather than the free form of the compound, with a high interindividual variability, raises some doubts about the health effects of dietary resveratrol consumption and suggests that the benefits associated to red wine consumption could be probably due to the whole antioxidant pool present in red wine.
The comprehensive identification of phenolic compounds in food and beverages is a crucial starting point for assessing their biological, nutritional, and technological properties. Pomegranate (Punica granatum L.) has been described as a rich source of (poly)phenolic components, with a broad array of different structures (phenolic acids, flavonoids, and hydrolyzable tannins) and a quick, high throughput, and accurate screening of its complete profile is still lacking. In the present work, a method for UHPLC separation and linear ion trap mass spectrometric (MSn) characterization of pomegranate juice phenolic fraction was optimized by comparing several different analytical conditions. The best solutions for phenolic acids, anthocyanins, flavonoids, and ellagitannins have been delineated and more than 70 compounds have been identified and fully characterized in less than one hour total analysis time. Twenty-one compounds were tentatively detected for the first time in pomegranate juice. The proposed fingerprinting approach could be easily translated to other plant derived food extracts and beverages containing a wide array of phytochemical compounds.
Although most rice cultivars have whitish kernel, some varieties have a red testa. Aim of this work was to compare the total antioxidant capacity (TAC) and the antioxidant chemical composition (namely tocols, gamma-oryzanols, and polyphenols) of red and white rices. In addition, the effect of milling and cooking on antioxidants was investigated in both rices. Dehulled red rice showed a TAC more than three times greater than dehulled white rice and its high TAC was essentially characterized by the presence of proanthocyanidins (PA) and associated phenolics. Milling caused a significant loss of TAC, even if red rice maintained a higher TAC. Cooking caused a further loss of antioxidants, but when there was a full uptake of cooking water by the grains ("risotto") this loss was limited. Thus, the consumption of whole or partially milled rice cooked as risotto would be preferred to preserve its nutritional properties.
Fusarium mycotoxins are secondary metabolites produced by Fusarium spp. in cereals. Among them, deoxynivalenol (DON) and zearalenone (ZEN) are widespread worldwide contaminants of cereal commodities and are ranked as the most important chronic dietary risk factors. Their conjugates, known as masked mycotoxins, have been described but are still not accounted for in risk assessment studies. This study demonstrates for the first time that DON and ZEN are effectively deconjugated by the human colonic microbiota, releasing their toxic aglycones and generating yet unidentified catabolites. For this reason, masked mycotoxins should be considered when evaluating population exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.