With particular interest on total hip arthroplasty (THA), optimization of orthopedic prostheses is employed in this work to minimize the probability of implant failure or maximize prosthesis reliability. This goal is often identified with the reduction of stress concentrations at the interface between bone and these devices. However, aseptic loosening of the implant is mainly influenced by bone resorption phenomena revealed in some regions of the femur when a prosthesis is introduced. As a consequence, bone resorption appears due to stress shielding, that is to say the decrease of the stress level in the implanted femur caused by the significant load carrying of the prosthesis due to its higher stiffness. A maximum stiffness topological optimization-based (TO) strategy is utilized for non-linear static finite element (FE) analyses of the femur-implant assembly, with the goal of reducing stress shielding in the femur and to furnish guidelines for re-designing hip prostheses. This is accomplished by employing an extreme accuracy for both the three- dimensional reconstruction of the femur geometry and the material properties maps assigned as explicit functions of the local densities.
SUMMARYThis paper provides a first insight on tube configurations based on the hexagonal shape (hexagrid) for tall buildings. The idea is to investigate the mechanical properties of hexagrid to assess their applicability in tall buildings and to compare their potential efficiency to the more popular diagrid systems.For the above purposes, a general homogenization approach has been established for dealing with any structural patterns, and a methodology for characterizing the structural patterns from the mechanical point of view has been developed and specified for hexagrids and diagrids. Then on the basis of a simple stiffness criterion, a design procedure has been proposed and applied to a tall building case study, and several structural solutions (both hexagrids and diagrids) have been designed and assessed by varying the major geometrical parameters of the patterns.
In this paper, a first insight into the role that non-conventional structural patterns might play in the design of tall buildings is presented. The idea is to explore the mechanical properties of selected non-conventional structural patterns, in the form of both regular (Hexagrid) and irregular (Voronoi tessellation inspired) arrays, in order to assess their actual applicability in tall building design. For this aim, the concept of Representative Volume Element (RVE) and a classical homogenization-based micromechanical approach are employed for identifying the pattern units and deriving the relevant generalized stress-strain relationships. In the case of irregular patterns based on Voronoi diagrams, obtained by perturbing prescribed key geometrical features of hexagrids, a statistically significant sample of RVEs is defined on the basis of sensitivity analyses, and the related mechanical characterization is developed in statistical terms. Finally, a preliminary stiffness-based design procedure is proposed and applied to a tall building model with Voronoi exoskeleton. In conclusion, a discussion on the effectiveness of the design procedure and on the structural efficiency of the Voronoi patterns for tall buildings is presented.
This is the author's final version of the contribution published as:[M. Fraldi, G. Perrella, M. Ciervo, F. Bosia, N.M. Pugno, A hybrid deterministicprobabilistic approach to model the mechanical response of helically arranged hierarchical strands, Journal of the Mechanics AbstractVery recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex bundle structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The results show that generalized stress-strain responses -incorporating tensile/torsion couplingare naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires belonging to the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by an "Unequal Load Sharing" criterion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.