Detecting Distant Planets More than 400 planets have been detected outside the solar system, most of which have masses similar to that of the gas giant planet, Jupiter. Borucki et al. (p. 977 , published online 7 January) summarize the planetary findings derived from the first six weeks of observations with the Kepler mission whose objective is to search for and determine the frequency of Earth-like planets in the habitable zones of other stars. The results include the detection of five new exoplanets, which confirm the existence of planets with densities substantially lower than those predicted for gas giant planets.
New transiting planet candidates are identified in 16 months (2009 May-2010 of data from the Kepler spacecraft. Nearly 5000 periodic transit-like signals are vetted against astrophysical and instrumental false positives yielding 1108 viable new planet candidates, bringing the total count up to over 2300. Improved vetting metrics are employed, contributing to higher catalog reliability. Most notable is the noise-weighted robust averaging of multiquarter photo-center offsets derived from difference image analysis that identifies likely background eclipsing binaries. Twenty-two months of photometry are used for the purpose of characterizing each of the candidates. Ephemerides (transit epoch, T 0 , and orbital period, P) are tabulated as well as the products of light curve modeling: reduced radius (R P /R ), reduced semimajor axis (d/R ), and impact parameter (b). The largest fractional increases are seen for the smallest planet candidates (201% for candidates smaller than 2 R ⊕ compared to 53% for candidates larger than 2 R ⊕ ) and those at longer orbital periods (124% for candidates outside of 50 day orbits versus 86% for candidates inside of 50 day orbits). The gains are larger than expected from increasing the observing window from 13 months (Quarters 1-5) to 16 months (Quarters 1-6) even in regions of parameter space where one would have expected the previous catalogs to be complete. Analyses of planet frequencies based on previous catalogs will be affected by such incompleteness. The fraction of all planet candidate host stars with multiple candidates has grown from 17% to 20%, and the paucity of short-period giant planets in multiple systems is still evident. The progression 1The Astrophysical Journal Supplement Series, 204:24 (21pp), 2013 February Batalha et al. toward smaller planets at longer orbital periods with each new catalog release suggests that Earth-size planets in the habitable zone are forthcoming if, indeed, such planets are abundant.
On 2011 February 1 the Kepler mission released data for 156,453 stars observed from the beginning of the science observations on 2009 May 2 through September 16. There are 1235 planetary candidates with transit-like signatures detected in this period. These are associated with 997 host stars. Distributions of the characteristics of the planetary candidates are separated into five class sizes: 68 candidates of approximately Earth-size (R p
We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around Solar-type (GK) stars. These results are based on the 1,235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R ⊕ . For each of the 156,000 target stars we assess the detectability of planets as a function of planet radius, R p , and orbital period, P , using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R ⋆ /a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e. bright, main sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R ⊕ . We count planets in small domains of R p and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R ⊕ ) and out to the longest orbital period (50 days, ∼0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df /d log R = k R R α with k R = 2.9 +0.5 −0.4 , α = −1.92 ± 0.11, and R = R p /R ⊕ . This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation, but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R p > 2 R ⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R ⊕ , in agreement with Doppler surveys. We fit occurrence as a function of P to a power law model with an exponential cutoff below a critical period P 0 . For smaller planets, P 0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R ⊕ planets in the Kepler field linearly increases with decreasing T eff , making these small planets seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).
We present spectra for 12 new ultracool dwarfs found in the DENIS infrared survey. Seven of them have spectral types at the bottom of the M-class (M8ÈM9.5), and the other Ðve belong to the cooler "" L ÏÏ class. We also present spectra for the two new L dwarfs found by the EROS 2 proper-motion survey. We introduce a scheme for L dwarf classiÐcation that is based on an extension to cooler spectra of a pseudocontinuum ratio previously deÐned for M dwarfs. For calibrating the spectral subclasses, we use a temperature scale for late-M and L dwarfs recently obtained by Basri et al. from synthetic spectrum Ðtting of high-resolution proÐles of Cs I and Rb I resonance lines. We deÐne that the subclass range from L0 to L6 corresponds to the temperature range from 2200 K to 1600 K. Our subclasses L0, L1, and L2 agree with recent Ðndings by Kirkpatrick et al., but then they diverge such that our L6 is equivalent to their L8. We Ðnd that late-M and L dwarf subclasses can be assigned either in the optical with the PC3 index or in the near-infrared with the H-band index. We discuss the main photospheric features H 2 O present in L dwarf spectra, in particular in the region 400È650 nm, which has never been shown before. The TiO bands at 549.7, 559.7, 615.9, and 638.4 nm fade with decreasing temperature, but do not vanish until well inside the L domain (DL5). The Na I 589.0, 589.6 nm resonance doublet in our latest object (L6) becomes the broadest atomic feature ever seen in any cool dwarf. We do not detect emission in H a our L dwarfs later than L3. We discuss the ages and masses of our objects using their temperatures and absence or presence of lithium. Finally, we compare two L1 dwarfs with di †erent gravities (one with lithium and one without it) and discuss di †erences in spectral features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.