It is well established that the intestinal microbiota plays a key role in the pathogenesis of Crohn's disease (CD) and ulcerative colitis (UC) collectively referred to as inflammatory bowel disease (IBD). Epidemiological studies have provided strong evidence that IBD patients bear increased risk for the development of colorectal cancer (CRC). However, the impact of the microbiota on the development of colitis-associated cancer (CAC) remains largely unknown. In this study, we established a new model of CAC using azoxymethane (AOM)-exposed, conventionalized-Il10−/− mice and have explored the contribution of the host intestinal microbiota and MyD88 signaling to the development of CAC. We show that 8/13 (62%) of AOM-Il10−/− mice developed colon tumors compared to only 3/15 (20%) of AOM- wild-type (WT) mice. Conventionalized AOM-Il10−/− mice developed spontaneous colitis and colorectal carcinomas while AOM-WT mice were colitis-free and developed only rare adenomas. Importantly, tumor multiplicity directly correlated with the presence of colitis. Il10−/− mice mono-associated with the mildly colitogenic bacterium Bacteroides vulgatus displayed significantly reduced colitis and colorectal tumor multiplicity compared to Il10−/− mice. Germ-free AOM-treated Il10−/− mice showed normal colon histology and were devoid of tumors. Il10−/−; Myd88−/− mice treated with AOM displayed reduced expression of Il12p40 and Tnfα mRNA and showed no signs of tumor development. We present the first direct demonstration that manipulation of the intestinal microbiota alters the development of CAC. The TLR/MyD88 pathway is essential for microbiota-induced development of CAC. Unlike findings obtained using the AOM/DSS model, we demonstrate that the severity of chronic colitis directly correlates to colorectal tumor development and that bacterial-induced inflammation drives progression from adenoma to invasive carcinoma.
We investigated whether the gut microbiota differed in 48 postmenopausal breast cancer case patients, pretreatment, vs 48 control patients. Microbiota profiles in fecal DNA were determined by Illumina sequencing and taxonomy of 16S rRNA genes. Estrogens were quantified in urine. Case-control comparisons employed linear and unconditional logistic regression of microbiota α-diversity (PD_whole tree) and UniFrac analysis of β-diversity, with two-sided statistical tests. Total estrogens correlated with α-diversity in control patients (Spearman Rho = 0.37, P = .009) but not case patients (Spearman Rho = 0.04, P = .77). Compared with control patients, case patients had statistically significantly altered microbiota composition (β-diversity, P = .006) and lower α-diversity (P = .004). Adjusted for estrogens and other covariates, odds ratio of cancer was 0.50 (95% confidence interval = 0.30 to 0.85) per α-diversity tertile. Differences in specific taxa were not statistically significant when adjusted for multiple comparisons. This pilot study shows that postmenopausal women with breast cancer have altered composition and estrogen-independent low diversity of their gut microbiota. Whether these affect breast cancer risk and prognosis is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.