Antibiotic resistance and the colonization of bacteria on surfaces, often as biofilms, prolong hospitalization periods, increase mortality, and are thus major concerns for health care providers. There is an urgent need for antimicrobial and antibiofilm surface treatments that are permanent, can eradicate both biofilms and planktonic pathogens over long periods of time, and do not select for resistant strains. In this study, we have demonstrated a simple, robust, and biocompatible method that utilizes the adhesive property of polydopamine (PDA) to covalently attach the antimicrobial enzyme lysostaphin (Lst) to a variety of surfaces to generate antibacterial and antibiofilm interfaces. The immobilization of the recombinant Lst onto PDA-coated surfaces was carried out under physiological conditions, most probably through the C-terminal His6-tag fragment of the enzyme, minimizing the losses of bioagent activity. The modified surfaces were extensively characterized by X-ray photoelectron spectroscopy and peak force quantitative nanomechanical mapping (PeakForce QNM) AFM-based method, and the presence of Lst on the surfaces was further confirmed immunochemically using anti-Lst antibody. We also found that, in contrast to the physically adsorbed Lst, the covalently attached Lst does not leach from the surfaces and maintains its endopeptidase activity to degrade the staphylococcal cell wall, avoiding most intracellular bacterial resistance mechanisms. Moreover, the Lst-coated surfaces kill hospital strains of Staphylococcus aureus in less than 15 min and prevent biofilm formation. This immobilization method should be applicable also to other proteins and enzymes that are recombinantly expressed to include the His6-tag fragment.
A facile, versatile, and one-pot sonochemical synthesis of polydopamine (PDA)-nanocapsules from dopamine is reported. The nanocapsules (227 ± 25 nm) can encapsulate hydrophobic substances while retaining the reactivity of PDA toward nucleophilic reactions, enabling facile surface modification for different applications. PDA nanocapsules are nontoxic to mammalian cells while Cu-containing PDA capsules demonstrate strong (99.9%) and rapid (15 min) bactericidal activity.
A facile one-pot sonochemical synthesis of Cu-, Ag-, and hybrid Cu/Ag-based polydopamine nanoparticles (Cu-, Ag-, and Cu/Ag-PDA-NPs) and the mechanisms by which they exert antibacterial and antibiofilm activities are reported. We showed that the nanoparticles are spherical with a core-shell structure. Whereas Cu is chelated to the shell of Cu-PDA-NPs in oxidation states of +1/+2, the core of Ag-PDA-NPs is filled with elemental Ag°. Sonochemical irradiation of dopamine in the presence of both Cu(2+) and Ag(+) generates hybrid Cu/Ag-PDA-NPs, whose shells are composed of Cu-chelated PDA with Ag° in the core. The redox potential of the metals was found to be the main determinant of the location and oxidation state of the metals. Leaching studies under physiological conditions reveal a relatively fast release of Cu ions from the shell, whereas Ag leaches very slowly from the core. The metal-containing PDA-NPs are highly microbicidal and exhibit potent antibiofilm activity. The combination of both metals in Cu/Ag-PDA-NPs is especially effective against bacteria and robust biofilms, owing to the dual bactericidal mechanisms of the metals. Most importantly, both Ag- and Cu/Ag-PDA-NPs proved to be significantly more antibacterial than commercial Ag-NPs while exhibiting lower toxicity toward NIH 3T3 mouse embryonic fibroblasts. Mechanistically, the metal-containing PDA-NPs generate stable PDA-semiquinone and reactive oxygen species under physiological conditions, which contribute at least partly to the antimicrobial activity. We also demonstrated that simple treatment of surfaces with Ag-PDA-NPs converts them to antibacterial, the activity of which was preserved even after prolonged storage under ambient conditions.
Encapsulation of ICG and IR-1061 in PCL–PEG micelles producing agents with increased stability of ICG and tunable PTT and PDT activity. The micelles are also useful for NIR imaging and NIR nanothermometry.
Indocyanine Green (ICG) is one of the most common fluorescent dyes that emits in the near-infrared (NIR) region, with extensive use in the medical field. However, this dye is susceptible to photobleaching, thermal degradation and oxidation in acidic conditions. The major pathway by which ICG photobleaches involves sensitization to form singlet oxygen, which can react with the dye's backbone, resulting in decomposition to non-fluorescent debris. In this paper we introduce the concept of using energy transfer (ET) for the protection of NIR dyes against photodecomposition. The dye IR-1061 was chosen as an ET pair due to its spectral overlap with ICG. First, it was shown that the presence of the former in solution reduced disintegration of the latter by absorbance and fluorescence spectroscopy. A singlet oxygen-reactive fluorescent indicator was employed to demonstrate that the production of this reactive species is also greatly reduced. This photoprotective effect was improved by encapsulation of the dyes in phospholipid-PEG micelles, which reduces the distance between them, thus enhancing the ET efficiency. The micelles were characterized for their optical properties and their size was determined to be about 10 nm with dynamic light scattering (DLS) techniques. The ET particles displayed greater fluorescence over 1000 nm compared to either dye encapsulated alone. The micelles proved to be superior than the free dye in terms of chemical, thermal and photo-stability. Moreover, the system demonstrated improved heating due to a greater photothermal effect compared to ICG dye in free or encapsulated form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.