Interactions in aqueous media between uniformly charged surfaces are well understood, but most real surfaces are heterogeneous and disordered. Here we show that two such heterogeneous surfaces covered with random charge domains experience a long-range attraction across water that is orders of magnitude stronger than van der Waals forces, even in the complete absence of any charge correlations between the opposing surfaces. We demonstrate that such strong attraction may arise generally, even for overall neutral surfaces, from the inherent interaction asymmetry between equally and between oppositely charged domains.
Lubrication by hydration shells that surround, and are firmly attached to, charges in water, and yet are highly fluid, provide a new mode for the extreme reduction of friction in aqueous media. We report new measurements, using a mica surface-force balance, on several different systems which exhibit hydration lubrication, extending earlier studies significantly to shed new light on the nature and limits of this mechanism. These include lubrication by hydrated ions trapped between charged surfaces, and boundary lubrication by surfactants, by polyzwitterionic brushes and by close-packed layers of phosphatidylcholine vesicles. Sliding friction coefficients as low as 10(-4) or even lower, and mean contact pressures of up to 17 MPa or higher are indicated. This suggests that the hydration lubrication mechanism may underlie low-friction sliding in biological systems, in which such pressures are rarely exceeded.
Meso-porous electrodes (pore width « 1 µm) are a central component in electrochemical energy storage devices and related technologies, based on the capacitive nature of electric double-layers at their surfaces. This requires that such charging, limited by ion transport within the pores, is attained over the device operation time. Here we measure directly electric double layer charging within individual nano-slits, formed between gold and mica surfaces in a surface force balance, by monitoring transient surface forces in response to an applied electric potential. We find that the nano-slit charging time is of order 1 s (far slower than the time of order 3 × 10−2 s characteristic of charging an unconfined surface in our configuration), increasing at smaller slit thickness, and decreasing with solution ion concentration. The results enable us to examine critically the nanopore charging dynamics, and indicate how to probe such charging in different conditions and aqueous environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.