This article reviews the anatomical connections of the paraventricular nucleus of the thalamus (PVT) and discusses some of the connections by which the PVT could influence behavior. The PVT receives neurochemically diverse projections from the brainstem and hypothalamus with an especially strong innervation from peptide producing neurons. Anatomical evidence is also presented which suggests that the PVT relays information from neurons involved in visceral or homeostatic functions. In turn, the PVT is a major source of projections to the nucleus accumbens, the bed nucleus of the stria terminalis and the central nucleus of the amygdala as well as the cortical areas associated with these subcortical regions. The PVT is activated by conditions and cues that produce states of arousal including those with appetitive or aversive emotional valences. The paper focuses on the potential contribution of the PVT to circadian rhythms, fear, anxiety, food intake and drug-seeking. The information in this paper highlights the potential importance of the PVT as being a component of the brain circuits that regulate reward and defensive behavior with the hope of generating more research in this relatively understudied region of the brain.
The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. This study examined the connections between the PVT and the forebrain by using the retrograde tracer cholera toxin B (CTb) and the anterograde tracer biotin dextran amine (BDA). The anterior and posterior regions of the PVT were found to send a dense projection to the nucleus accumbens. The posterior PVT was also found to provide a strong projection to the lateral bed nucleus of the stria terminalis (BST), interstitial nucleus of the posterior limb of the anterior commissure (IPAC), and central nucleus of the amygdala (CeA), regions associated with the extended amygdala. In contrast, the anterior PVT was found to send a weaker projection to the extended amygdala. The basolateral nucleus of the amygdala and the medial prefrontal cortex were found to receive a relatively weak projection from the PVT, and other regions of the BST and amygdala were found to be poorly innervated by the PVT. In addition, the PVT was found to innervate regions in the extended amygdala that contained corticotropin-releasing factor (CRF) neurons, many of which were found to receive apparent contacts from PVT fibers. The projection from the PVT to the nucleus accumbens and extended amygdala places the PVT in a key anatomical position to influence adaptive behaviors as well as the physiological and neuroendocrine responses associated with these behaviors.
The paraventricular nucleus of the thalamus (PVT) is part of a group of midline and intralaminar thalamic nuclei implicated in arousal and attention. Recent research points to anatomical and functional differences between the anterior (aPVT) and posterior PVT (pPVT). The present study re-examines the main sources of brain inputs to the aPVT and pPVT in the rat following iontophoretic injections of the retrograde tracer cholera toxin B (CTb) in the PVT. The location and the number of retrogradely labeled neurons in different regions of the brain were examined to determine which brain areas are likely to exert a strong influence on the aPVT and pPVT. The largest number of labeled neurons was found in layer 6 of the prelimbic, infralimbic and posterior insular cortices following injections in the pPVT. In contrast, the largest number of labeled neurons following injections of CTb in the aPVT was found to be in the hippocampal subiculum and the prelimbic cortex. Other areas of the brain including the reticular nucleus of the thalamus, periaqueductal gray, parabrachial nucleus and dorsomedial nucleus of the hypothalamus were found to contain a more moderate number of neurons following injections of CTb in either the aPVT or pPVT. The results of the present tracing study clearly show that more neurons in the prefrontal cortex and subiculum project to the PVT than neurons from the hypothalamus and brainstem. These results highlight the potential importance of top-down modulation of PVT mechanisms and behavioral functions.
The purpose of this review is to describe how the function and connections of the paraventricular thalamic nucleus (Pa) may play a role in the regulation of stress and negative emotional behavior. Located in the dorsal midline thalamus, the Pa is heavily innervated by serotonin, norepinephrine, dopamine (DA), corticotropin-releasing hormone, and orexins (ORX), and is the only thalamic nucleus connected to the group of structures comprising the amygdala, bed nucleus of the stria terminalis (BNST), nucleus accumbens (NAcc), and infralimbic/subgenual anterior cingulate cortex (sgACC). These neurotransmitter systems and structures are involved in regulating motivation and mood, and display abnormal functioning in several psychiatric disorders including anxiety, substance use, and major depressive disorders (MDD). Furthermore, rodent studies show that the Pa is consistently and potently activated following a variety of stressors and has a unique role in regulating responses to chronic stressors. These observations provide a compelling rationale for investigating the Pa in the link between stress and negative emotional behavior, and for including the Pa in the neural pathways of stress-related psychiatric disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.