NMDA receptor (NMDAR)-induced excitotoxicity is thought to contribute to the cell death associated with certain neurodegenerative diseases, stroke, epilepsy, and traumatic brain injury. Targeting NMDARs therapeutically is complicated by the fact that cell signaling downstream of their activation can promote cell survival and plasticity as well as excitotoxicity. However, research over the past decade has suggested that overactivation of NMDARs located outside of the synapse plays a major role in NMDAR toxicity, whereas physiological activation of those inside the synapse can contribute to cell survival, raising the possibility of therapeutic intervention based on NMDAR subcellular localization. Here, we review the evidence both supporting and refuting this localization hypothesis of NMDAR function and discuss the role of NMDAR localization in disorders of the nervous system. Preventing excessive extrasynaptic NMDAR activation may provide therapeutic benefit, particularly in Alzheimer disease and Huntington disease.
Huntington disease (HD) model mice with heterozygous knock-in (KI) of an expanded CAG tract in exon 1 of the mouse huntingtin (Htt) gene homolog genetically recapitulate the mutation that causes HD, and might be favoured for preclinical studies. However, historically these mice have failed to phenotypically recapitulate the human disease. Thus, homozygous KI mice, which lack wildtype Htt, and are much less relevant to human HD, have been used. The zQ175 model was the first KI mouse to exhibit significant HD-like phenotypes when heterozygous. In an effort to exacerbate HD-like phenotypes and enhance preclinical utility, we have backcrossed zQ175 mice to FVB/N, a strain highly susceptible to neurodegeneration. These Q175F mice display significant HD-like phenotypes along with sudden early death from fatal seizures. The zQ175 KI allele retains a floxed neomycin resistance cassette upstream of the Htt gene locus and produces dramatically reduced mutant Htt as compared to the endogenous wildtype Htt allele. By intercrossing with mice expressing cre in germ line cells, we have excised the neo cassette from Q175F mice generating a new line, Q175FΔneo (Q175FDN). Removal of the neo cassette resulted in a ∼2 fold increase in mutant Htt and rescue of fatal seizures, indicating that the early death phenotype of Q175F mice is caused by Htt deficiency rather than by mutant Htt. Additionally, Q175FDN mice exhibit earlier onset and a greater variety and severity of HD-like phenotypes than Q175F mice or any previously reported KI HD mouse model, making them valuable for preclinical studies.
Objective To assess the effectiveness of an activity programme in improving function, quality of life, and falls in older people in residential care.Design Cluster randomised controlled trial with one year follow-up.Setting 41 low level dependency residential care homes in New Zealand.Participants 682 people aged 65 years or over.Interventions 330 residents were offered a goal setting and individualised activities of daily living activity programme by a gerontology nurse, reinforced by usual healthcare assistants; 352 residents received social visits.Main outcome measures Function (late life function and disability instruments, elderly mobility scale, FICSIT-4 balance test, timed up and go test), quality of life (life satisfaction index, EuroQol), and falls (time to fall over 12 months). Secondary outcomes were depressive symptoms and hospital admissions.
The shell of the nucleus accumbens (NacSh) receives a dense innervation from dopamine (DA) neurons in the ventral tegmental area (VTA) and from glutamate neurons in the paraventricular nucleus of the thalamus (PVT). The present study examined in urethane-anesthetized rats the effects of electrical stimulation of the PVT on DA levels in the NacSh as measured with amperometry and chronoamperometry. Stimulation of the PVT (40 Hz, 1.0 ms, 400 microA, 5 seconds) resulted in a brief increase in electrochemical currents detected in the NacSh. Inhibition of DA neurons in the VTA using lidocaine (4%, 500 nL) or intravenous apomorphine (0.15 mg/kg) decreased the resting voltammetric signal but had no effect on PVT-evoked responses. Blocking of ionotropic glutamate receptors in the NacSh with local administration of kynurenic acid attenuated the PVT-evoked responses. Anterograde tracing with biotinylated dextran amine demonstrated that PVT targets regions of very dense tyrosine hydroxylase fiber staining in the NacSh. Consistent with the projection pattern of the PVT to the NacSh, stimulation of the PVT evoked the largest oxidation current changes in the NacSh, whereas small or no changes were elicited in other areas of the striatum. This study suggests that glutamate release from PVT terminals can act on ionotropic glutamate receptors in the NacSh to induce DA efflux. Modulation of DA levels in the NacSh by the PVT may be linked to arousal-induced increases in DA tone and could be involved in the facilitation of specific behavioral patterns associated with arousal or stressful situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.