BACKGROUND-KAE609 (cipargamin; formerly NITD609, Novartis Institute for Tropical Diseases) is a new synthetic antimalarial spiroindolone analogue with potent, dose-dependent antimalarial activity against asexual and sexual stages of Plasmodium falciparum.
Abstract. The efficacy-safety and pharmacokinetics of the six-dose regimen of artemether-lumefantrine (Coartem/ Riamet; Novartis Pharma AG, Basel, Switzerland) were assessed in a randomized trial in 219 patients (Ն 12 years old) with acute, uncomplicated Plasmodium falciparum malaria in Thailand. One hundred and sixty-four patients received artemether-lumefantrine and 55 received the standard treatment combination of mefloquine-artesunate. Both drugs induced rapid clearance of parasites and malaria symptoms. The 28-day cure rates were 95.5% (90% confidence interval [CI] ϭ 91.7, 97.9%) for artemether-lumefantrine and 100% (90% CI ϭ 94.5, 100%) for mefloquine-artesunate. This high-dose regimen of artemether-lumefantrine was very well tolerated, with very good compliance. The most frequent adverse events were headache, dizziness, nausea, abdominal pain, dyspepsia, vomiting, and skin rash. Overall, only 2% of patients in both groups showed QTc prolongations but without any cardiac complication, and no differences were seen between patients with and without measurable baseline plasma levels of quinine or mefloquine. Plasma levels of artemether, dihydroartemisinin, and lumefantrine were consistent with historical data for the same dose regimen, and were higher, particularly for lumefantrine, than those previously observed with the four-dose regimen, explaining the greater efficacy of the six-dose regimen in a drug-resistant setting. These results confirm the excellent safety and efficacy of the six-dose regimen of artemether-lumefantrine in the treatment of multidrug-resistant P. falciparum malaria.
Artemether and lumefantrine (AL), the active constituents of Coartem ® exhibit complementary pharmacokinetic profiles. Artemether is absorbed quickly; peak concentrations of artemether and its main active metabolite, dihydroartemisinin (DHA) occur at approximately two hours post-dose, leading to a rapid reduction in asexual parasite mass and a prompt resolution of symptoms. Lumefantrine is absorbed and cleared more slowly (terminal elimination half-life 3-4 days in malaria patients), and accumulates with successive doses, acting to prevent recrudescence by destroying any residual parasites that remain after artemether and DHA have been cleared from the body. Food intake significantly enhances the bioavailability of both artemether and lumefantrine, an effect which is more apparent for the highly lipophilic lumefantrine. However, a meal with only a small amount of fat (1.6 g) is considered sufficient to achieve adequate exposure to lumefantrine. The pharmacokinetics of artemether or lumefantrine are similar in children, when dosed according to their body weight, compared with adults. No randomized study has compared the pharmacokinetics of either agent in pregnant versus non-pregnant women. Studies in healthy volunteers and in children with malaria have confirmed that the pharmacokinetic characteristics of crushed standard AL tablets and the newly-developed Coartem ® Dispersible tablet formulation are similar. Studies to date in healthy volunteers have not identified any clinically relevant drug-drug interactions; data relating to concomitant administration of HIV therapies are limited. While doseresponse analyses are difficult to undertake because of the low rate of treatment failures under AL, it appears that artemether and DHA exposure impact on parasite clearance time while lumefantrine exposure is associated with cure rate, consistent with their respective modes of action.In conclusion, knowledge of the pharmacokinetic profiles of artemether and lumefantrine is increasing within a range of settings, including infants and children. However, additional data would be warranted to better characterize artemether and lumefantrine pharmacokinetics in patients with hepatic impairment, in pregnant women, and in patients undergoing HIV/AIDS chemotherapy.
A transdermal patch has been developed for the cholinesterase inhibitor rivastigmine. This study investigated the pharmacokinetics and pharmacodynamics of rivastigmine and NAP226-90, and compared drug exposure between patch and capsule administrations. This was an open-label, parallel-group study in Alzheimer's disease patients randomized to receive either capsule (1.5-6 mg Q12H, i.e., 3-12 mg/day) or patch (5-20 cm2) in ascending doses through four 14-day periods. The patch showed lower Cmax (ca. 30% lower at 20 cm2, 19.5 versus 29.3 ng/ml), longer tmax (8.0 versus 1.0 h), and greater AUC (ca. 1.8-fold at 20 cm2, 345 versus 191 ng x h/ml) compared with the 6 mg Q12H capsule dose, with markedly less fluctuation between peak and trough plasma levels (80% at 20 cm2 versus 620% at 1.5 mg Q12H). Plasma butyrylcholinesterase inhibition rose slowly after patch administration, whereas two distinct peaks were seen after capsule administration. Average exposure with the 10 cm2 patch was comparable to the highest capsule dose (6 mg Q12H, i.e., 12 mg/day).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.