Throughout the day, cognitive performance is under the combined influence of circadian processes and homeostatic sleep pressure. Some people perform best in the morning, whereas others are more alert in the evening. These chronotypes provide a unique way to study the effects of sleep-wake regulation on the cerebral mechanisms supporting cognition. Using functional magnetic resonance imaging in extreme chronotypes, we found that maintaining attention in the evening was associated with higher activity in evening than morning chronotypes in a region of the locus coeruleus and in a suprachiasmatic area (SCA) including the circadian master clock. Activity in the SCA decreased with increasing homeostatic sleep pressure. This result shows the direct influence of the homeostatic and circadian interaction on the neural activity underpinning human behavior.
SUMMAR Y To establish a dose-response relationship between the strength of electromagnetic fields (EMF) and previously reported effects on the brain, we investigated the influence of EMF exposure by varying the signal intensity in three experimental sessions. The head of 15 healthy male subjects was unilaterally exposed for 30 min prior to sleep to a pulsemodulated EMF (GSM handset like signal) with a 10 g-averaged peak spatial specific absorption rate of (1) 0.2 W kg -1 , (2) 5 W kg -1 , or (3) sham exposed in a double-blind, crossover design. During exposure, subjects performed two series of three computerized cognitive tasks, each presented in a fixed order [simple reaction time task, two-choice reaction time task (CRT), 1-, 2-, 3-back task]. Immediately after exposure, night-time sleep was polysomnographically recorded for 8 h. Sleep architecture was not affected by EMF exposure. Analysis of the sleep electroencephalogram (EEG) revealed a dosedependent increase of power in the spindle frequency range in non-REM sleep. Reaction speed decelerated with increasing field intensity in the 1-back task, while accuracy in the CRT and N-back task were not affected in a dose-dependent manner. In summary, this study reveals first indications of a dose-response relationship between EMF field intensity and its effects on brain physiology as demonstrated by changes in the sleep EEG and in cognitive performance. k e y w o r d s cellular phone, dose-response relationship, electroencephalogram
We investigated the effects of radio frequency electromagnetic fields on brain physiology. Twenty-four healthy young men were exposed for 30 min to pulse-modulated or continuous-wave radio frequency electromagnetic fields (900 MHz; peak specific absorption rate 1 W/kg), or sham exposed. During exposure, participants performed cognitive tasks. Waking electroencephalogram was recorded during baseline, immediately after, and 30 and 60 min after exposure. Pulse-modulated radio frequency electromagnetic field exposure reduced reaction speed and increased accuracy in a working-memory task. It also increased spectral power in the waking electroencephalogram in the 10.5-11 Hz range 30 min after exposure. No effects were observed for continuous-wave radio frequency electromagnetic fields. These findings provide further evidence for a nonthermal biological effect of pulsed radio frequency electromagnetic fields.
It is known that sleep reshapes the neural representations that subtend the memories acquired while navigating in a virtual environment. However, navigation is not process-pure, as manifold learning components contribute to performance, notably the spatial and contextual memory constituents. In this context, it remains unclear whether post-training sleep globally promotes consolidation of all of the memory components embedded in virtual navigation, or rather favors the development of specific representations. Here, we investigated the effect of post-training sleep on the neural substrates of the consolidation of spatial and contextual memories acquired while navigating in a complex 3D, naturalistic virtual town. Using fMRI, we mapped regional cerebral activity during various tasks designed to tap either the spatial or the contextual memory component, or both, 72 h after encoding with or without sleep deprivation during the first post-training night. Behavioral performance was not dependent upon post-training sleep deprivation, neither in a natural setting that engages both spatial and contextual memory processes nor when looking more specifically at each of these memory representations. At the neuronal level however, analyses that focused on contextual memory revealed distinct correlations between performance and neuronal activity in frontal areas associated with recollection processes after post-training sleep, and in the parahippocampal gyrus associated with familiarity processes in sleep-deprived participants. Likewise, efficient spatial memory was associated with posterior cortical activity after sleep whereas it correlated with parahippocampal/medial temporal activity after sleep deprivation. Finally, variations in place-finding efficiency in a natural setting encompassing spatial and contextual elements were associated with caudate activity after post-training sleep, suggesting the automation of navigation. These data indicate that post-training sleep modulates the neural substrates of the consolidation of both the spatial and contextual memories acquired during virtual navigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.