SUMMARYLeptin, the adipokine produced mainly by the white adipose tissue, plays important roles not only in the regulation of food intake, but also in controlling immunity and inflammation. It has been widely demonstrated that the absence of leptin leads to immune defects in animal and human models, ultimately increasing mortality. Leptin also regulates inflammation by means of actions on its receptor, that is widely spread across different immune cell populations. The molecular mechanisms by which leptin determines its biological actions have also been recently elucidated, and three intracellular pathways have been implicated in leptin actions: JAK-STAT, PI3K, and ERK 1/2. These pathways are closely regulated by intracellular proteins that decrease leptin biological activity. In this review, we discuss the molecular mechanisms by which leptin regulates immunity and inflammation, and associate those mechanisms with chronic inflammatory disorders. Arq Bras Endocrinol Metab. 2012;56(9):597-607 Keywords Leptin; immunity; inflammation; cytokines SUMÁRIO A leptina, uma adipocina produzida principalmente pelo tecido adiposo branco, tem um papel importante não somente na regulação da ingestão alimentar, mas também no controle da imunidade e da inflamação. Já foi amplamente demonstrado que a ausência de leptina causa deficiências imunológicas em modelos animais e em humanos, levando ao aumento da mortalidade. A leptina também regula a inflamação por meio da ação em seu receptor, amplamente distribuído em diversos tipos de células do sistema imunológico. Os mecanismos moleculares pelos quais a leptina determina suas ações biológicas foram recentemente elucidados, e três cascatas intracelulares são ativadas pela leptina: JAK-STAT, PI3K e ERK 1/2. Essas cascatas são reguladas por proteínas intracelulares, reduzindo as ações da leptina. Nesta revisão, são discutidos os mecanismos moleculares pelos quais a leptina regula a imunidade e a inflamação, associando-os a enfermidades inflamatórias crônicas. Arq Bras Endocrinol Metab. 2012;56(9):597-607 Descritores
There is increasing evidence that obesity may have pathophysiological effects that extend beyond its well-known co-morbidities; in particular its role in cancer has received considerable epidemiological support. As adipose tissue becomes strongly established as an endocrine organ, two of its most abundant and most investigated adipokines, leptin and adiponectin, are also taken beyond their traditional roles in energy homeostasis, and are implicated as mediators of the effects of obesity on cancer development. This review examines these adipokines in relation to the prostate, breast, colorectal, thyroid, renal, pancreatic, endometrial and oesophageal cancers, and how they may orchestrate the influence of obesity on the development of these malignancies.
BackgroundLeptin changes brain structure, neuron excitability and synaptic plasticity. It also regulates the development and function of feeding circuits. However, the effects of leptin on neurocognitive development are unknown.ObjectiveTo evaluate the effect of leptin on neurocognitive development.MethodologyA 5-year-old boy with a nonconservative missense leptin gene mutation (Cys-to-Thr in codon 105) was treated with recombinant methionyl human leptin (r-metHuLeptin) at physiologic replacement doses of 0.03 mg/kg/day. Cognitive development was assessed using the Differential Ability Scales (DAS), a measure of general verbal and nonverbal functioning; and selected subtests from the NEPSY, a measure of neuropsychological functioning in children.Principal FindingsPrior to treatment, the patient was morbidly obese, hypertensive, dyslipidemic, and hyperinsulinemic. Baseline neurocognitive tests revealed slower than expected rates of development (developmental age lower than chronological age) in a majority of the areas assessed. After two years, substantial increases in the rates of development in most neurocognitive domains were apparent, with some skills at or exceeding expectations based on chronological age. We also observed marked weight loss and resolution of hypertension, dyslipidemia and hyperinsulinemia.ConclusionsWe concluded that replacement with r-metHuLeptin is associated with weight loss and changes in rates of development in many neurocognitive domains, which lends support to the hypothesis that, in addition to its role in metabolism, leptin may have a cognitive enhancing role in the developing central nervous system.Trial RegistrationClinicalTrials.gov NCT00659828
Leptin has key roles in the regulation of energy balance, body weight, metabolism, and endocrine function. Leptin levels are undetectable or very low in patients with lipodystrophy, hypothalamic amenorrhea, and congenital leptin deficiency (CLD) due to mutations in the leptin gene. For these patients, leptin replacement therapy with metreleptin (a recombinant leptin analog) has improved or normalized most of their phenotypes, including normalization of endocrine axes, decrease in insulin resistance, and improvement of lipid profile and hepatic steatosis. Remarkable weight loss has been observed in patients with CLD. Due to its effects, leptin therapy has also been evaluated in conditions where leptin levels are normal or high, such as common obesity, diabetes (types 1 and 2), and Rabson-Mendenhall syndrome. A better understanding of the physiological roles of leptin may lead to the development of leptin-based therapies for other prevalent disorders such as obesity-associated nonalcoholic fatty liver disease, depression and dementia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.