SUMMARYPurpose: The aim of this work is to study, by means of computational simulations, the induction and sustaining of nonsynaptic epileptiform activity. Methods: The computational model consists of a network of cellular bodies of neurons and glial cells connected to a three-dimensional (3D) network of juxtaposed extracellular compartments. The extracellular electrodiffusion calculation was used to simulate the extracellular potential. Each cellular body was represented in terms of the transmembrane ionic transports (Na + /K + pumps, ionic channels, and cotransport mechanisms), the intercellular electrodiffusion through gap-junctions, and the neuronal interaction by electric field and the variation of cellular volume. Results: The computational model allows simulating the nonsynaptic epileptiform activity and the extracellular potential captured the main feature of the experimental measurements. The simulations of the concomitant ionic fluxes and concentrations can be used to propose the basic mechanisms involved in the induction and sustaining of the activities. Discussion: The simulations suggest: The bursting induction is mediated by the Cl ) Nernst potential overcoming the transmembrane potential in response to the extracellular [K + ] increase. The burst onset is characterized by a critical point defined by the instant when the Na + influx through its permeable ionic channels overcomes the Na + / K + pump electrogenic current. The burst finalization is defined by another critical point, when the electrogenic current of the Na + /K + pump overcomes its influx through the channels.
The authors have previously described astroglial activation in the ipsilateral nigrostriatal system and ventral tegmental area following small doses of 6-hydroxydopamine (6-OHDA) injected unilaterally in the striatum. This article further evaluated astroglial reactivity in several brain regions after striatal 6-OHDA-induced punctate lesion in the nigrostriatal pathway. Adult male Wistar rats received a unilateral stereotaxical injection of the 6-OHDA (8 microg/4 microl) in the neostriatum and sacrificed 1 or 3 weeks later. Control animals received only solvent. Immunohistochemistry was employed for visualization of the tyrosine hydroxylase (TH), marker for dopamine cells, and glial fibrillary acidic protein (GFAP), marker for astrocytes. TH immunoreactive terminals disappeared in the striatum close to the injection site and a disappearance of a small number of a defined population of dopamine cell bodies was observed in the ipsilateral pars compacta of the substantia nigra (SNc). No dopamine lesion was detected in the contralateral nigrostriatal pathway. Astroglial reaction was seen close to the lesion in the neostriatum and in the ipsilateral SNc of the 1 week 6-OHDA lesioned rats. Specific stereological tools employing point intercepts and rotator, revealed an increased presence of reactive astrocytes in many forebrain regions like frontal, parietal and piriform cortex, septum, neostriatum and SNc, bilaterally, and also corpus callosum after 1 week of 6-OHDA injection. The astroglial activation was characterized by increases in the size of the cell body and/or processes. Astrocytic reaction was found only in the ipsilateral nigrostriatal pathway by 3 weeks of 6-OHDA, a slight activation also remaining in the ipsilateral septum and piriform cortex. Astrocytic reaction was seen in the solvent-injected rats only in the neostriatum close to the needle track. The transient widespread astroglial reaction observed in many brain regions following a striatal injection of 6-OHDA may represent a global paracrine trophic response in the brain.
Structural rearrangement of the dentate gyrus has been described as the underlying cause of many types of epilepsies, particularly temporal lobe epilepsy. It is said to occur when aberrant connections are established in the damaged hippocampus, as described in human epilepsy and experimental models. Computer modelling of the dentate gyrus circuitry and the corresponding structural changes has been used to understand how abnormal mossy fibre sprouting can subserve seizure generation observed in experimental models when epileptogenesis is induced by status epilepticus. The model follows the McCulloch-Pitts formalism including the representation of the nonsynaptic mechanisms. The neuronal network comprised granule cells, mossy cells, and interneurons. The compensation theory and the Hebbian and anti-Hebbian rules were used to describe the structural rearrangement including the effects of the nonsynaptic mechanisms on the neuronal activity. The simulations were based on neuroanatomic data and on the connectivity pattern between the cells represented. The results suggest that there is a joint action of the compensation theory and Hebbian rules during the inflammatory process that accompanies the status epilepticus. The structural rearrangement simulated for the dentate gyrus circuitry promotes speculation about the formation of the abnormal mossy fiber sprouting and its role in epileptic seizures.
The important role of cation-chloride co-transporters in epilepsy is being supported by an increasing number of investigations. However, enormous complexity is involved since the action of these co-transporters has effects on the ionic homeostasis influencing directly the neuronal excitability and the tissue propensity to sustain seizure. To unravel the complex mechanisms involving the co-transporters action during seizure, this paper shows simulations of non-synaptic epileptiform activity and the effect of the blockage of the two different types of cation-chloride co-transporters present in the brain: Na, K and 2Cl co-transporter (NKCC) and K and Cl co-transporter (KCC). The simulations were performed with an electrochemical model representing the non-synaptic structure of the granule cell layer of the dentate gyrus (DG) of the rat hippocampus. The simulations suggest: (i) the potassium clearance is based on the systemic interplay between the Na/K pump and the NKCC co-transporters; (ii) the simultaneous blockage of the NKCC of the neurons and KCC of glial cells acts efficiently suppressing the epileptiform activities; and (iii) the simulations show that depending on the combined blockage of the co-transporters, the epileptiform activities may be suppressed or enhanced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.