This paper presents a study of linear control systems based on exact feedback linearization and approximate feedback linearization. As exact feedback linearization is applied, a linear controller can perform the control objectives. The approximate feedback linearization is required when a nonlinear system presents a noninvolutive property. It uses a Taylor series expansion in order to compute a nonlinear transformation of coordinates to satisfy the involutivity conditions.
Predicting the need for hospitalization due to COVID-19 may help patients to seek timely treatment and assist health professionals to monitor cases and allocate resources. We investigate the use of machine learning algorithms to predict the risk of hospitalization due to COVID-19 using the patient's medical history and self-reported symptoms, regardless of the period in which they occurred. Three datasets containing information regarding 217,580 patients from three different states in Brazil have been used. Decision trees, neural networks, and support vector machines were evaluated, achieving accuracies between 79.1% to 84.7%. Our analysis shows that better performance is achieved in Brazilian states ranked more highly in terms of the official human development index (HDI), suggesting that health facilities with better infrastructure generate data that is less noisy. One of the models developed in this study has been incorporated into a mobile app that is available for public use.
Predicting the need for hospitalization due to COVID-19 may help patients to seek timely treatment and assist health professionals to monitor cases and allocate resources. We investigate the use of machine learning algorithms to predict the risk of hospitalization due to COVID-19 using the patient's medical history and self-reported symptoms, regardless of the period in which they occurred. Three datasets containing information regarding 217,580 patients from three different states in Brazil have been used. Decision trees, neural networks, and support vector machines were evaluated, achieving accuracies between 79.1% to 84.7%. Our analysis shows that better performance is achieved in Brazilian states ranked more highly in terms of the official human development index (HDI), suggesting that health facilities with better infrastructure generate data that is less noisy. One of the models developed in this study has been incorporated into a mobile app that is available for public use.
Predicting the need for hospitalization due to COVID-19 may help patients to seek timely treatment and assist health professionals to monitor cases and allocate resources. We investigate the use of machine learning algorithms to predict the risk of hospitalization due to COVID-19 using the patient's medical history and self-reported symptoms, regardless of the period in which they occurred. Three datasets containing information regarding 217,580 patients from three different states in Brazil have been used. Decision trees, neural networks, and support vector machines were evaluated, achieving accuracies between 79.1% to 84.7%. Our analysis shows that better performance is achieved in Brazilian states ranked more highly in terms of the official human development index (HDI), suggesting that health facilities with better infrastructure generate data that is less noisy. One of the models developed in this study has been incorporated into a mobile app that is available for public use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.