Anopheles gambiae, the primary African vector of malaria parasites, exhibits numerous rhythmic behaviors including flight activity, swarming, mating, host seeking, egg laying, and sugar feeding. However, little work has been performed to elucidate the molecular basis for these daily rhythms. To study how gene expression is regulated globally by diel and circadian mechanisms, we have undertaken a DNA microarray analysis of An. gambiae under light/ dark cycle (LD) and constant dark (DD) conditions. Adult mated, non-blood-fed female mosquitoes were collected every 4 h for 48 h, and samples were processed with DNA microarrays. Using a cosine wave-fitting algorithm, we identified 1,293 and 600 rhythmic genes with a period length of 20-28 h in the head and body, respectively, under LD conditions, representing 9.7 and 4.5% of the An. gambiae gene set. A majority of these genes was specific to heads or bodies. Examination of mosquitoes under DD conditions revealed that rhythmic programming of the transcriptome is dependent on an interaction between the endogenous clock and extrinsic regulation by the LD cycle. A subset of genes, including the canonical clock components, was expressed rhythmically under both environmental conditions. A majority of genes had peak expression clustered around the day/night transitions, anticipating dawn and dusk. Genes cover diverse biological processes such as transcription/translation, metabolism, detoxification, olfaction, vision, cuticle regulation, and immunity, and include rate-limiting steps in the pathways. This study highlights the fundamental roles that both the circadian clock and light play in the physiology of this important insect vector and suggests targets for intervention.
Many aspects of physiology and behavior are temporally organized into daily 24 hr rhythms, driven by an endogenous circadian clock. Studies in eukaryotes have identified a network of interacting genes forming interlocked autoregulatory feedback loops which underlie overt circadian organization in single cells. While in mammals the master oscillator resides in the suprachiasmatic nuclei of the hypothalamus, semiautonomous circadian oscillators also exist in peripheral tissues and in immortalized fibroblasts, where rhythmicity is induced following a serum shock. We used this model system in combination with high-density cDNA microarrays to examine the magnitude and quality of clock control of gene expression in mammalian cells. Supported by application of novel bioinformatics tools, we find approximately 2% of genes, including expected canonical clock genes, to show consistent rhythmic circadian expression across five independent experiments. Rhythmicity in most of these genes is novel, and they fall into diverse functional groups, highlighted by a predominance of transcription factors, ubiquitin-associated factors, proteasome components, and Ras/MAPK signaling pathway components. When grouped according to phase, 68% of the genes were found to peak during estimated subjective day, 32% during estimated subjective night, with a tendency to peak at a phase corresponding to anticipation of dawn or dusk.
Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding “big data” that are conceptually and statistically difficult to analyze. There is no obvious consensus regarding design or analysis. Here we discuss the relevant technical considerations to generate reproducible, statistically sound, and broadly useful genome-scale data. Rather than suggest a set of rigid rules, we aim to codify principles by which investigators, reviewers, and readers of the primary literature can evaluate the suitability of different experimental designs for measuring different aspects of biological rhythms. We introduce CircaInSilico, a web-based application for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms. Finally, we discuss several unmet analytical needs, including applications to clinical medicine, and suggest productive avenues to address them.
SummaryRetinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms.
Many aspects of physiology and behaviour are organized around a daily rhythm, driven by an endogenous circadian clock. Studies across numerous taxa have identified interlocked autoregulatory molecular feedback loops which underlie circadian organization in single cells. Until recently, little was known of (i) how the core clock mechanism regulates circadian output and (ii) what proportion of the cellular transcriptome is clock regulated. Studies using DNA microarray technology have addressed these questions in a global fashion and identified rhythmically expressed genes in numerous tissues in the rodent (suprachiasmatic nucleus, pineal gland, liver, heart, kidney) and immortalized fibroblasts, in the head and body of Drosophila, in the fungus Neurospora and the higher plant Arabidopsis. These clock controlled genes represent 0.5-9% of probed genes, with functional groups covering a broad spectrum of cellular pathways. There is considerable tissue specificity, with only approximately 10% rhythmic genes common to at least one other tissue, principally consisting of known clock genes. The remaining common genes may constitute genes operating close to the clock mechanism or novel core clock components. Microarray technology has also been applied to understand input pathways to the clock, identifying potential signalling components for clock resetting in fibroblasts, and elucidating the temperature entrainment mechanism in Neurospora. This review explores some of the common themes found between tissues and organisms, and focuses on some of the striking connections between the molecular core oscillator and aspects of circadian physiology and behaviour. It also addresses the limitations of the microarray technology and analyses, and suggests directions for future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.