Many aspects of physiology and behavior are temporally organized into daily 24 hr rhythms, driven by an endogenous circadian clock. Studies in eukaryotes have identified a network of interacting genes forming interlocked autoregulatory feedback loops which underlie overt circadian organization in single cells. While in mammals the master oscillator resides in the suprachiasmatic nuclei of the hypothalamus, semiautonomous circadian oscillators also exist in peripheral tissues and in immortalized fibroblasts, where rhythmicity is induced following a serum shock. We used this model system in combination with high-density cDNA microarrays to examine the magnitude and quality of clock control of gene expression in mammalian cells. Supported by application of novel bioinformatics tools, we find approximately 2% of genes, including expected canonical clock genes, to show consistent rhythmic circadian expression across five independent experiments. Rhythmicity in most of these genes is novel, and they fall into diverse functional groups, highlighted by a predominance of transcription factors, ubiquitin-associated factors, proteasome components, and Ras/MAPK signaling pathway components. When grouped according to phase, 68% of the genes were found to peak during estimated subjective day, 32% during estimated subjective night, with a tendency to peak at a phase corresponding to anticipation of dawn or dusk.
Habituation, where a response is reduced when exposed to a continuous stimulus is one of the simplest forms of non-associative learning and has been shown in a number of organisms from sea slugs to rodents. However, very little has been reported in the zebrafish, a model that is gaining popularity for high-throughput compound screens. Furthermore, since most of the studies involving learning and memory in zebrafish have been conducted in adults, we sought to determine if zebrafish larvae could display non-associative learning and whether it could be modulated by compounds identified in previous rodent studies. We demonstrated that zebrafish larvae (7 days post fertilization) exhibit iterative reduction in a startle response to a series of acoustic stimuli. Furthermore, this reduction satisfied criteria for habituation: spontaneous recovery, more rapid reductions in startle to shorter intertrial intervals and dishabituation. We then investigated the pathways mediating this behavior using established compounds in learning and memory. Administration of rolipram (PDE4 inhibitor), donepezil (acetylcholinesterase inhibitor), and memantine (N-methyl-D-aspartic acid (NMDA) receptor antagonist) all increased the acoustic startle response and decreased habituation in the larvae, similar to previous rodent studies. Further studies demonstrated that NMDA blocked the memantine response and the effect of donepezil was blocked by mecamylamine but not atropine suggesting that the donepezil response was mediated by nicotinic rather than muscarinic receptors. Zebrafish larvae possess numerous advantages for medium to high-throughput screening; the model described herein therefore offers the potential to screen for additional compounds for further study on cognition function.
Abstract:As the population ages, there is a growing need for effective therapies for the treatment of neurological diseases. A limited number of therapeutics are currently available to improve cognitive function and research is limited by the need for in vivo models. Zebrafi sh have recently become a focus of neurobehavioral studies since larvae display neuropathological and behavioral phenotypes that are quantifi able and relate to those seen in man. Due to the small size of Zebrafi sh larvae, assays can be undertaken in 96 well plates and as the larvae can live in as little as 200 µl of fl uid, only a few milligrams of compound are needed for screening. Thus in vivo analysis of the effects of compounds can be undertaken at much earlier stages in the drug discovery process. This review will look at the utility of the zebrafi sh in the study of neurological diseases and its role in improving the throughput of candidate compounds in in vivo screens.
The suprachiasmatic nuclei (SCN) contain the principal circadian clock governing overt daily rhythms of physiology and behavior. The endogenous circadian cycle is entrained to the light/dark via direct glutamatergic retinal afferents to the SCN. To understand the molecular basis of entrainment, it is first necessary to define how rapidly the clock is reset by a light pulse. We used a two-pulse paradigm, in combination with cellular and behavioral analyses of SCN function, to explore the speed of resetting of the circadian oscillator in Syrian hamster and mouse. Analysis of c-fos induction and cAMP response element-binding protein phosphorylation in the retinorecipient SCN demonstrated that the SCN are able to resolve and respond to light pulses presented 1 or 2 hr apart. Analysis of the phase shifts of the circadian wheel-running activity rhythm of hamsters presented with single or double pulses demonstrated that resetting of the oscillator occurred within 2 hr. This was the case for both delaying and advancing phase shifts. Examination of delaying shifts in the mouse showed resetting within 2 hr and in addition showed that resetting is not completed within 1 hr of a light pulse. These results establish the temporal window within which to define the primary molecular mechanisms of circadian resetting in the mammal.
There is a substantial body of evidence indicating that -amyloid peptides (A) are critical factors in the onset and development of Alzheimer's disease (AD). One strategy for combating AD is to reduce or eliminate the production of A through inhibition of the ␥-secretase enzyme, which cleaves A from the amyloid precursor protein (APP). We demonstrate here that chronic treatment for 3 months with 3 mg/kg of the potent, orally bioavailable and brain-penetrant ␥-secretase inhibitor N- [cis-4-[(4-chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) attenuates the appearance of amyloid plaques in the Tg2576 mouse. These reductions in plaques were also accompanied by a decrease in the level of reactive gliosis. The morphometric and histological measures agreed with biochemical analysis of A(40) and A(42) in the cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.