The use of an HPLC bioactivity profiling/microtiter plate technique in conjunction with capillary probe NMR instrumentation and access to appropriate databases effectively short-circuits conventional dereplication procedures, necessarily based on multimilligram extracts, to a single, more rapid submilligram operation. This approach to dereplication is illustrated using fungal or bacterial extracts that contain known compounds. In each case the dereplication steps were carried out on microgram quantities of extract and demonstrate the discriminating power of (1)H NMR spectroscopy as a definitive dereplication tool.
A total of 69 species of lichens have been collected from various locations around New Zealand. Screening of extracts of these species for antimicrobial, antiviral and cytotoxic activity showed a high proportion with biological activity. Active extracts were generally from species known to contain phenolic compounds. Bioactivity-directed isolation work on Cladia retipora, Pseudocyphellaria glabra and P. homoeophylla led to the identification of usnic acid as the main antimicrobial, cytotoxic and antiviral component in these three species.
Using HPLC/microtiter-plate-based generation of activity profiles the extract of a marine alga-derived fungus, identified as Gliocladium sp., was shown to contain the known strongly cytotoxic metabolite 4-keto-clonostachydiol (1) and also clonostachydiol (2) as well as gliotide (3), a new cyclodepsipeptide containing several D-amino acids. The absolute configuration of 1 was elucidated by reduction to 2, and two further oxidized derivatives of clonostachydiol (5, 6) were prepared and evaluated for biological activity.
By the application of an HPLC bioactivity profiling/microtiter technique in conjunction with capillary NMR instrumentation and access to the AntiMarin database the conventional evaluation/isolation dereplication/characterization procedures can be dramatically truncated. This approach is illustrated using the isolation of a new peptaibol, chrysaibol (1), from a New Zealand isolate of the mycoparasitic fungus Sepedonium chrysospermum. The unique nature of chrysaibol was recognized by bioactivity-guided fractionation using HPLC bioactivity profiling/microtiter plate analysis in conjunction with capillary NMR instrumentation and the AntiMarin database. 2D NMR techniques, in combination with MS fragmentation experiments, determined the planar structure of chrysaibol (1), while the absolute configurations of the amino acid residues were defined by Marfey's method. Chrysaibol (1) was cytotoxic against the P388 murine leukemia cell line (IC50 6.61 microM) and showed notable activity against Bacillus subtilis (IC50 1.54 microM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.