The state of the art performance of deep learning models comes at a high cost for companies and institutions, due to the tedious data collection and the heavy processing requirements. Recently, [35,22] proposed to watermark convolutional neural networks for image classification, by embedding information into their weights. While this is a clear progress towards model protection, this technique solely allows for extracting the watermark from a network that one accesses locally and entirely.Instead, we aim at allowing the extraction of the watermark from a neural network (or any other machine learning model) that is operated remotely, and available through a service API. To this end, we propose to mark the model's action itself, tweaking slightly its decision frontiers so that a set of specific queries convey the desired information. In the present paper, we formally introduce the problem and propose a novel zero-bit watermarking algorithm that makes use of adversarial model examples. While limiting the loss of performance of the protected model, this algorithm allows subsequent extraction of the watermark using only few queries. We experimented the approach on three neural networks designed for image classification, in the context of MNIST digit recognition task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.