Previous studies have shown that tetraploid (4n) cells rarely contribute to the derivatives of the epiblast lineage of mid-gestation 4n<-->2n mouse chimeras. The aim of the present study was to determine when and how 4n cells were excluded from the epiblast lineage of such chimeras. The contributions of GFP-positive cells to different tissues of 4n<-->2n chimeric blastocysts labelled with tauGFP were analysed at E3.5 and E4.5 using confocal microscopy. More advanced E5.5 and E7.5 chimeric blastocysts were analysed after a period of diapause to allow further growth without implantation. Tetraploid cells were not initially excluded from the epiblast in 4n<-->2n chimeric blastocysts and they contributed to all four blastocyst tissues at all of the blastocyst stages examined. Four steps affected the allocation and fate of 4n cells in chimeras, resulting in their exclusion from the epiblast lineage by mid-gestation. (1) Fewer 4n cells were allocated to the inner cell mass than trophectoderm. (2) The blastocyst cavity tended to form among the 4n cells, causing more 4n cells to be allocated to the hypoblast and mural trophectoderm than the epiblast and polar trophectoderm, respectively. (3) 4n cells were depleted from the hypoblast and mural trophectoderm, where initially they were relatively enriched. (4) After implantation 4n cells must be lost preferentially from the epiblast lineage. Relevance of these results to the aetiology of human confined placental mosaicism and possible implications for the interpretation of mouse tetraploid complementation studies of the site of gene action are discussed.
The mouse TgTP6.3 transgene, encoding a tauGFP fusion protein, is becoming widely used but has yet to be fully characterized and evaluated as suitable lineage marker.
BackgroundThe tauGFP reporter fusion protein is produced nearly ubiquitously by the TgTP6.3 transgene in TP6.3 mice and its localisation to microtubules offers some advantages over soluble GFP as a lineage marker. However, TgTP6.3 Tg/Tg homozygotes are not viable and TgTP6.3 Tg/− hemizygotes are smaller than wild-type. TP6.4 mice carry the TgTP6.4 transgene, which was produced with the same construct used to generate TgTP6.3, so we investigated whether TgTP6.4 had any advantages over TgTP6.3.ResultsAlthough TgTP6.4 Tg/Tg homozygotes died before weaning, TgTP6.4 Tg/− hemizygotes were viable and fertile and only males were significantly lighter than wild-type. The TgTP6.4 transgene produced the tauGFP fusion protein by the 2-cell stage and it was widely expressed in adults but tauGFP fluorescence was weak or absent in several tissues, including some neural tissues. The TgTP6.4 transgene expression pattern changed over several years of breeding and mosaic transgene expression became increasingly common in all expressing tissues. This mosaicism was used to visualise clonal lineages in the adrenal cortex of TgTP6.4 Tg/− hemizygotes and these were qualitatively and quantitatively comparable to lineages reported previously for other mosaic transgenic mice, X-inactivation mosaics and chimaeras. Mosaicism occurred less frequently in TP6.3 than TP6.4 mice and was only observed in the corneal epithelium and adrenal cortex.ConclusionsMosaic expression makes the TgTP6.4 transgene unsuitable for use as a conventional cell lineage marker but such mosaicism provides a useful system for visualising clonal lineages that arise during development or maintenance of adult tissues. Differences in the occurrence of mosaicism between related transgenic lines, such as that described for lines TP6.3 and TP6.4, might provide a useful system for investigating the mechanism of transgene silencing.Electronic supplementary materialThe online version of this article (doi:10.1186/s12861-017-0149-x) contains supplementary material, which is available to authorized users.
It has been shown previously that BALB/c strain embryos tend to contribute poorly to mouse aggregation chimaeras. In the present study we showed that BALB/c cells were not preferentially allocated to any extraembryonic lineages of mouse aggregation chimaeras, but their contribution decreased during the early postimplantation period and they were significantly depleted by E8.5. The development of BALB/c strain preimplantation embryos lagged behind embryos from some other strains and the contribution that BALB/c and other embryos made to chimaeras correlated with their developmental stage at E2.5. This relationship suggests that the poor contribution of BALB/c embryos to aggregation chimaeras is at least partly a consequence of generalised selection related to slow or delayed preimplantation development. The suitability of BALB/c embryos for maximising the ES cell contribution to mouse ES cell chimaeras is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.