The calculation of pseudo-relative permeabilities can be speeded up considerably by using steady-state methods. The capillary equilibrium limit may be assumed at small scales (30 cm or less), when the flood rate is low. At high flow rates and larger distance scales, we may use a viscous-dominated steady-state method which assumes constant fractional flow. Steady-state pseudos may also be calculated at intermediate flow rates using fine-scale simulations, and allowing the flood to come into equilibrium at different fractional flow levels. The aim of this paper is to assess the accuracy of steady-state scale-up for small-scale sedimentary structures.
We have tested steady-state scale-up methods using a variety of small-scale geological models. The success of steady-state scale-up depends not only on the flow rate, but also on the nature of the heterogeneity. If high permeability zones are surrounded by low permeability ones (e.g. low permeability laminae or bed boundaries), oil trapping may occur in a water-wet system. In this case pseudo-oil-relative permeabilities are very sensitive to flow rate, and care must be taken to upscale using the correct viscous/capillary ratio. However, in permeability models, where phase trapping may not occur (unconnected low permeability regions), the pseudos are similar, whatever the viscous/capillary ratio.
The disadvantage of steady-state scale-up is that it cannot take account of numerical dispersion, in the manner in which dynamic methods can. However, we show examples of coarse-scale simulations with viscous-dominated steady-state pseudos which agree favourably with fine-scale simulations. Provided there are sufficient grid blocks in the coarse-scale model, the smearing of the flood front due to numerical effects is not serious.
The Bunter Sandstone Formation in the UK Southern North Sea has the potential to become an important CO 2 storage unit if carbon dioxide capture and storage becomes a widely deployed option for the mitigation of greenhouse gases. A detailed geological model of a region of the Bunter Sandstone consisting of four domed structural closures was created using existing seismic, well log and core data. Compositional simulation of CO 2 injection was performed to estimate the storage capacity of domes within the system. The injection was constrained by both pressure and CO 2 migration criteria, and the storage efficiencies of the domes (volume of stored CO 2 divided by the pore volume of the dome) were calculated when injection ceased. A sensitivity study evaluated the effect of varying the total aquifer volume, reservoir heterogeneity and injection well location. A wide range of storage efficiency values were obtained across the different simulation cases, ranging from 4% (closed dome) to 33% (homogeneous model). Intra-reservoir heterogeneity, specifically in the form of continuous low permeability layers has an important effect on storage capacity in dome-like structures, because it increases the tendency for CO 2 to migrate laterally from the storage complex via structural spill points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.