Health care providers are legally obliged to report cases of specified diseases to public health authorities, but existing manual, provider-initiated reporting systems generally result in incomplete, error-prone, and tardy information flow. Automated laboratory-based reports are more likely accurate and timely, but lack clinical information and treatment details. Here, we describe the Electronic Support for Public Health (ESP) application, a robust, automated, secure, portable public health detection and messaging system for cases of notifiable diseases. The ESP application applies disease specific logic to any complete source of electronic medical data in a fully automated process, and supports an optional case management workflow system for case notification control. All relevant clinical, laboratory and demographic details are securely transferred to the local health authority as an HL7 message. The ESP application has operated continuously in production mode since January 2007, applying rigorously validated case identification logic to ambulatory EMR data from more than 600,000 patients. Source code for this highly interoperable application is freely available under an approved open-source license at http://esphealth.org.
Electronic medical record (EMR) systems have rich potential to improve integration between primary care and the public health system at the point of care. EMRs make it possible for clinicians to contribute timely, clinically detailed surveillance data to public health practitioners without changing their existing workflows or incurring extra work. New surveillance systems can extract raw data from providers' EMRs, analyze them for conditions of public health interest, and automatically communicate results to health departments. The current paper describes a model EMR-based public health surveillance platform called Electronic Medical Record Support for Public Health (ESP). The ESP platform provides live, automated surveillance for notifiable diseases, influenza-like illness, and diabetes prevalence, care, and complications. Results are automatically transmitted to state health departments.
The Massachusetts Virtual Epidemiologic Network (MAVEN) was deployed in 2006 by the Massachusetts Department of Public Health, Bureau of Infectious Disease to serve as an integrated, Web-based disease surveillance and case management system. MAVEN replaced program-specific, siloed databases, which were inaccessible to local public health and unable to integrate electronic reporting. Disease events are automatically created without human intervention when a case or laboratory report is received and triaged in real time to state and local public health personnel. Events move through workflows for initial notification, case investigation, and case management. Initial development was completed within 12 months and recent state regulations mandate the use of MAVEN by all 351 jurisdictions. More than 300 local boards of health are using MAVEN, there are approximately one million events, and 70 laboratories report electronically. MAVEN has demonstrated responsiveness and flexibility to emerging diseases while also streamlining routine surveillance processes and improving timeliness of notifications and data completeness, although the long-term resource requirements are significant.
BackgroundAutomatic identification of notifiable diseases from electronic medical records can potentially improve the timeliness and completeness of public health surveillance. We describe the development and implementation of an algorithm for prospective surveillance of patients with acute hepatitis B using electronic medical record data.MethodsInitial algorithms were created by adapting Centers for Disease Control and Prevention diagnostic criteria for acute hepatitis B into electronic terms. The algorithms were tested by applying them to ambulatory electronic medical record data spanning 1990 to May 2006. A physician reviewer classified each case identified as acute or chronic infection. Additional criteria were added to algorithms in serial fashion to improve accuracy. The best algorithm was validated by applying it to prospective electronic medical record data from June 2006 through April 2008. Completeness of case capture was assessed by comparison with state health department records.FindingsA final algorithm including a positive hepatitis B specific test, elevated transaminases and bilirubin, absence of prior positive hepatitis B tests, and absence of an ICD9 code for chronic hepatitis B identified 112/113 patients with acute hepatitis B (sensitivity 97.4%, 95% confidence interval 94–100%; specificity 93.8%, 95% confidence interval 87–100%). Application of this algorithm to prospective electronic medical record data identified 8 cases without false positives. These included 4 patients that had not been reported to the health department. There were no known cases of acute hepatitis B missed by the algorithm.ConclusionsAn algorithm using codified electronic medical record data can reliably detect acute hepatitis B. The completeness of public health surveillance may be improved by automatically identifying notifiable diseases from electronic medical record data.
Electronic medical record (EMR) systems have rich potential to improve integration between primary care and the public health system at the point of care. EMRs make it possible for clinicians to contribute timely, clinically detailed surveillance data to public health practitioners without changing their existing workflows or incurring extra work. New surveillance systems can extract raw data from providers' EMRs, analyze them for conditions of public health interest, and automatically communicate results to health departments. We describe a model EMR-based public health surveillance platform called Electronic Medical Record Support for Public Health (ESP). The ESP platform provides live, automated surveillance for notifiable diseases, influenza-like illness, and diabetes prevalence, care, and complications. Results are automatically transmitted to state health departments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.