The catabolism of fatty acids is important in the lifestyle of many fungi, including plant and animal pathogens. This has been investigated in Aspergillus nidulans, which can grow on acetate and fatty acids as sources of carbon, resulting in the production of acetyl coenzyme A (CoA). Acetyl-CoA is metabolized via the glyoxalate bypass, located in peroxisomes, enabling gluconeogenesis. Acetate induction of enzymes specific for acetate utilization as well as glyoxalate bypass enzymes is via the Zn 2 -Cys 6 binuclear cluster activator FacB. However, enzymes of the glyoxalate bypass as well as fatty acid beta-oxidation and peroxisomal proteins are also inducible by fatty acids. We have isolated mutants that cannot grow on fatty acids. Two of the corresponding genes, farA and farB, encode two highly conserved families of related Zn 2 -Cys 6 binuclear proteins present in filamentous ascomycetes, including plant pathogens. A single ortholog is found in the yeasts Candida albicans, Debaryomyces hansenii, and Yarrowia lipolytica, but not in the Ashbya, Kluyveromyces, Saccharomyces lineage. Northern blot analysis has shown that deletion of the farA gene eliminates induction of a number of genes by both short-and long-chain fatty acids, while deletion of the farB gene eliminates short-chain induction. An identical core 6-bp in vitro binding site for each protein has been identified in genes encoding glyoxalate bypass, beta-oxidation, and peroxisomal functions. This sequence is overrepresented in the 5 region of genes predicted to be fatty acid induced in other filamentous ascomycetes, C. albicans, D. hansenii, and Y. lipolytica, but not in the corresponding genes in Saccharomyces cerevisiae.It has become increasingly clear that the breakdown of fatty acids is important in the metabolism, development, and pathogenicity of many fungi. Catabolism occurs via the beta-oxidation pathway, in which fatty acids are activated to the corresponding acyl coenzyme A (CoA) and then oxidation by a series of enzyme steps releases acetyl-CoA and an acyl-CoA shortened by two carbons, which can undergo additional cycles of beta-oxidation. In mammals, beta-oxidation of long-chain fatty acids occurs in peroxisomes, while medium-and shortchain fatty acids undergo beta-oxidation in the mitochondria (reviewed in references 16 and 84). In contrast, in Saccharomyces cerevisiae fatty acids are metabolized entirely in peroxisomes (reviewed in reference 29). In fungi, where fatty acids can serve as sole sources of carbon and energy, the acetyl-CoA must be converted to C 4 compounds via the glyoxalate bypass, comprising the enzymes isocitrate lyase and malate synthase, allowing gluconeogenesis (40, 64). Isocitrate lyase and malate synthase are usually, but not always, located in peroxisomes. It has been found that mutations affecting isocitrate lyase, malate synthase, and peroxisomal functions can affect the pathogenicity of both plant and animal pathogens (33,37,45,46,66). Furthermore it has been found that genes encoding enzymes for fatty acid catabol...
Peroxisomes are organelles containing a diverse array of enzymes. In fungi they are important for carbon source utilization, pathogenesis, development, and secondary metabolism. We have studied Aspergillus nidulans peroxin (pex) mutants isolated by virtue of their inability to grow on butyrate or by the inactivation of specific pex genes. While all pex mutants are able to form colonies, those unable to import PTS1 proteins are partially defective in asexual and sexual development. The pex mutants are able to grow on acetate but are affected in growth on fatty acids, indicating a requirement for the peroxisomal localization of b-oxidation enzymes. However, mislocalization of malate synthase does not prevent growth on either fatty acids or acetate, showing that the glyoxylate cycle does not require peroxisomal localization. Proliferation of peroxisomes is dependent on fatty acids, but not on acetate, and on PexK (Pex11), expression of which is activated by the FarA transcription factor. Proliferation was greatly reduced in a farAD strain. A mutation affecting a mitochodrial ketoacyl-CoA thiolase and disruption of a mitochondrial hydroxy-acyl-CoA dehydrogenase gene prevented growth on short-chain but not long-chain fatty acids. Together with previous results, this is consistent with growth on even-numbered short-chain fatty acids requiring a mitochondrial as well as a peroxisomal b-oxidation pathway. The mitochondrial pathway is not required for growth on valerate or for long-chain fatty acid utilization.
Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification.
BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.