contributed equally to this work.
Conflict of interest:The authors have declared that no conflict of interest exists. Nonstandard abbreviations used: mitochondrial DNA (mtDNA); ribosomal RNA (rRNA); transfer RNA (tRNA); succinate dehydrogenase (SDH).
Cardiac hypertrophy is a major risk factor for heart failure and associated patient morbidity and mortality. Research investigating the aberrant molecular processes that occur during cardiac hypertrophy uses primary cardiomyocytes from neonatal rat hearts as the standard experimental in vitro system. In addition, some studies make use of the H9C2 rat cardiomyoblast cell line, which has the advantage of being an animal-free alternative; however, the extent to which H9C2 cells can accurately mimic the hypertrophic responses of primary cardiac myocytes has not yet been fully established. To address this limitation, we have directly compared the hypertrophic responses of H9C2 cells with those of primary rat neonatal cardiomyocytes following stimulation with hypertrophic factors. Primary rat neonatal cardiomyocytes and H9C2 cells were cultured in vitro and treated with angiotensin II and endothelin-1 to promote hypertrophic responses. An increase in cellular footprint combined with rearrangement of cytoskeleton and induction of foetal heart genes were directly compared in both cell types using microscopy and real-time rtPCR. H9C2 cells showed almost identical hypertrophic responses to those observed in primary cardiomyocytes. This finding validates the importance of H9C2 cells as a model for in vitro studies of cardiac hypertrophy and supports current work with human cardiomyocyte cell lines for prospective molecular studies in heart development and disease.
Defects of mitochondrial DNA (mtDNA) are an important cause of disease and play a role in the ageing process. There are multiple copies of the mitochondrial genome in a single cell. In many patients with acquired or inherited mtDNA mutations, there exists a mixture of mutated and wild type genomes (termed heteroplasmy) within individual cells. As a biochemical and clinical defect is only observed when there are high levels of mutated mtDNA, a crucial investigation is to determine the level of heteroplasmic mutations within tissues and individual cells. We have developed an assay to determine the relative amount of deleted mtDNA using real-time fluorescence PCR. This assay detects the vast majority of deleted molecules, thus eliminating the need to develop specific probes. We have demonstrated an excellent correlation with other techniques (Southern blotting and three- primer competitive PCR), and have shown this technique to be sensitive to quantify the level of deleted mtDNA molecules in individual cells. Finally, we have used this assay to investigate patients with mitochondrial disease and shown in individual skeletal muscle fibres that there exist different patterns of abnormalities between patients with single or multiple mtDNA deletions. We believe that this technique has significant advantages over other methods to quantify deleted mtDNA and, employed alongside our method to sequence the mitochondrial genome from single cells, will further our understanding of the role of mtDNA mutations in human disease and ageing.
Background Lynch syndrome is associated with an increased risk of colorectal cancer and with a broader spectrum of cancers, especially endometrial cancer. In 2011, our group reported long-term cancer outcomes (mean follow-up 55•7 months [SD 31•4]) for participants with Lynch syndrome enrolled into a randomised trial of daily aspirin versus placebo. This report completes the planned 10-year follow-up to allow a longer-term assessment of the effect of taking regular aspirin in this high-risk population.
MethodsIn the double-blind, randomised CAPP2 trial, 861 patients from 43 international centres worldwide (707 [82%] from Europe, 112 [13%] from Australasia, 38 [4%] from Africa, and four [<1%] from The Americas) with Lynch syndrome were randomly assigned to receive 600 mg aspirin daily or placebo. Cancer outcomes were monitored for at least 10 years from recruitment with English, Finnish, and Welsh participants being monitored for up to 20 years. The primary endpoint was development of colorectal cancer. Analysis was by intention to treat and per protocol. The trial is registered with the ISRCTN registry, number ISRCTN59521990.
contributed equally to this work.
Conflict of interest:The authors have declared that no conflict of interest exists. Nonstandard abbreviations used: mitochondrial DNA (mtDNA); ribosomal RNA (rRNA); transfer RNA (tRNA); succinate dehydrogenase (SDH).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.