Steel fibers in reinforced concrete increase the performance of slab-column connection once they increase ductility and energy absorption capacity of the concrete. The use of fibers in flat slabs may increase strength and change the mode of failure. The objective of this work is to present an experimental evaluation of punching shear strength of reinforced concrete flat slab with steel fibers and punching shear reinforcement. Eight square slabs, size 1800 mm by 1800 mm by 130mm, were loaded until failure by punching shear around the column. The models were divided in two groups, depending on the type of the concrete used (with or without steel fibers). The steel fiber volume used in the slabs of second group was of 0.9%. Each group was composed of four slabs: one without shear reinforcement and three with shear reinforcement (studs) distributed radially around the column. The use of steel fibers increased the ultimate strength of all flat slabs. In one of the slabs, the association of steel fibers with shear reinforcement changed the failure surface from outside to inside the punching shear reinforcement region.
Punching shear is a possible type of failure that occurs in reinforced concrete flat slabs, which can develop with an ultimate load below flexural capacity. Several researchers have studied the punching resistance of flat slabs over recent years. Although they have made great advances, there are codes that show different approaches to a singular design. Some codes show that there exist contradictions, even in the simplest situations, such as concentric loads. Most codes prescribe empirical expressions based in a theoretical model to analyze punching strength, but for flat slabs with holes around the column and shear reinforcement there are divergences between codes, justifying research in this area. This paper presents an experimental analysis of nine square reinforced concrete flat slabs under concentric loading (width: 1800 mm; thickness: 130 mm). The main variables used in the tests were: a) two square openings (150 mm) adjacent to the smallest side of the column and b) the use of shear reinforcement containing 3 layers, with 6 or 8 elements in each layer and radially distributed around the column. The research concludes that openings adjacent to the column affect punching shear strength, while the correct use of the shear reinforcement can minimize and even compensate this loss.
This paper presents the experimental study of eccentrically loaded reinforced concrete columns with an added 35 mm self-compacting concrete jacket attached to the column’s most compressed face using wedge bolts. Nine columns with a 2000 mm height were tested under compression and one-way bending until failure. Columns were denominated as original column (PO) with a cross section of 120 mm x 250 mm; reference column (PR) with a cross section of 155 mm x 250 mm, and seven columns with an initial cross section of 120 mm x 250 mm and later reinforced by the addition of 35 mm self-compacting concrete layer and various configurations of wedge bolts. Except for the original column PO, the columns were submitted to a 42.5 mm load eccentricity due to the added concrete layer at the compressed face. Although failure of the wedge bolts did not occur, it was not possible to prevent detachment of the added layer. The results indicate that it is possible to structurally rehabilitate reinforce concrete columns with the use of the strengthening methodology used in this research, resulting in average ultimate load capacity gains of 271% compared to original column’s ultimate load.
ResumoThis article presents the study of reinforced concrete columns strengthened using a partial jacket consisting of a 35mm self-compacting concrete layer added to its most compressed face and tested in combined compression and uniaxial bending until rupture. Wedge bolt connectors were used to increase bond at the interface between the two concrete layers of different ages. Seven 2000 mm long columns were tested. Two columns were cast monolithically and named PO (original column) e PR (reference column). The other five columns were strengthened using a new 35 mm thick self-compacting concrete layer attached to the column face subjected to highest compressive stresses. Column PO had a 120mm by 250 mm rectangular cross section and other columns had a 155 mm by 250mm cross section after the strengthening procedure. Results show that the ultimate resistance of the strengthened columns was more than three times the ultimate resistance of the original column PO, indicating the effectiveness of the strengthening procedure. Detachment of the new concrete layer with concrete crushing and steel yielding occurred in the strengthened columns.Este artigo apresenta um estudo do comportamento de pilares de concreto armado reforçados por encamisamento parcial, com o uso de uma camada de 35 mm de concreto auto adensável na face mais comprimida submetidos à flexo-compressão até à ruptura. Foram utilizados parafusos conectores como armadura de ligação entre as duas camadas de concreto de diferentes idades. Foram ensaiados 7 pilares de 2000 mm de altura, sendo 2 peças concretadas monoliticamente nomeadas de PO (pilar original) e PR (pilar de referência). Os outros 5 pilares foram reforçados utilizando uma camada de 35 mm de concreto moldada na face submetida a maior compressão. O pilar PO tinha uma seção transversal retangular de 120x 250 mm e as demais colunas 155 x 250 mm após executado o reforço. Os resultados alcançados mostram que os pilares reforçados atingiram uma resistência de aproximadamente três vezes maior com relação ao pilar PO, demostrando eficiência da técnica utilizada. Os pilares apresentaram o desplacamento da camada de reforço nas cargas finais, com tendências ao esmagamento do concreto e escoamento do aço.Palavras-chave: pilares, reforço, concreto, parafusos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.