Autonomous feeding is challenging because it requires manipulation of food items with various compliance, sizes, and shapes. To understand how humans manipulate food items during feeding and to explore ways to adapt their strategies to robots, we collected a rich dataset of human trajectories by asking them to pick up food and feed it to a mannequin. From the analysis of the collected haptic and motion signals, we demonstrate that humans adapt their control policies to accommodate to the compliance and shape of the food item being acquired. We propose a taxonomy of manipulation strategies for feeding to highlight such policies. As a first step to generate compliance-dependent policies, we propose a set of classifiers for compliance-based food categorization from haptic and motion signals. We compare these human manipulation strategies with fixed position-control policies via a robot. Our analysis of success and failure cases of human and robot policies further highlights the importance of adapting the policy to the compliance of a food item.
We address the problem of imitation learning with multi-modal demonstrations. Instead of attempting to learn all modes, we argue that in many tasks it is sufficient to imitate any one of them. We show that the state-of-the-art methods such as GAIL and behavior cloning, due to their choice of loss function, often incorrectly interpolate between such modes. Our key insight is to minimize the right divergence between the learner and the expert state-action distributions, namely the reverse KL divergence or I-projection. We propose a general imitation learning framework for estimating and minimizing any f -Divergence. By plugging in different divergences, we are able to recover existing algorithms such as Behavior Cloning (Kullback-Leibler), GAIL (Jensen Shannon) and DAGGER (Total Variation). Empirical results show that our approximate I-projection technique is able to imitate multi-modal behaviors more reliably than GAIL and behavior cloning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.