This is the first time that gait characteristics of broiler (meat) chickens have been compared with their progenitor, jungle fowl, and the first kinematic study to report a link between broiler gait parameters and defined lameness scores. A commercial motion-capturing system recorded three-dimensional temporospatial information during walking. The hypothesis was that the gait characteristics of non-lame broilers (n = 10) would be intermediate to those of lame broilers (n = 12) and jungle fowl (n = 10, tested at two ages: immature and adult). Data analysed using multi-level models, to define an extensive range of baseline gait parameters, revealed inter-group similarities and differences. Natural selection is likely to have made jungle fowl walking gait highly efficient. Modern broiler chickens possess an unbalanced body conformation due to intense genetic selection for additional breast muscle (pectoral hypertrophy) and whole body mass. Together with rapid growth, this promotes compensatory gait adaptations to minimise energy expenditure and triggers high lameness prevalence within commercial flocks; lameness creating further disruption to the gait cycle and being an important welfare issue. Clear differences were observed between the two lines (short stance phase, little double-support, low leg lift, and little back displacement in adult jungle fowl; much double-support, high leg lift, and substantial vertical back movement in sound broilers) presumably related to mass and body conformation. Similarities included stride length and duration. Additional modifications were also identified in lame broilers (short stride length and duration, substantial lateral back movement, reduced velocity) presumably linked to musculo-skeletal abnormalities. Reduced walking velocity suggests an attempt to minimise skeletal stress and/or discomfort, while a shorter stride length and time, together with longer stance and double-support phases, are associated with instability. We envisage a key future role for this highly quantitative methodology in pain assessment (associated with broiler lameness) including experimental examination of therapeutic agent efficacy.
To determine whether lame broilers are in pain it is necessary to compare measures of lameness and mobility before and after analgesic treatment. Such measures should not be unduly affected by other bird characteristics. This study assessed the performance of lame (gait score, GS 3-4) and non-lame (GS 0-1) broilers using two mobility tests: (i) a novel test to assess broiler ability to access resources when housed in groups (Group Obstacle test); and (ii) a Latency-to-Lie (LTL) test. Outcome test measures included number of obstacle crossings, latency to cross an obstacle, and time taken to sit in shallow water. Associations between outcome test measures and other bird characteristics (established lameness risk-factors), including strain, sex, age, mass, contact dermatitis and pathology, were also investigated. The performance of high-GS and low-GS broilers differed in both mobility tests and no other bird characteristics were as consistent a predictor as lameness. This demonstrates that mobility impairments are closely related to lameness assessed using GS, and that there is a component of lameness that cannot be explained by other bird characteristics (eg being male and heavy). This component may represent pain or discomfort. Both mobility tests are suitable for further application with analgesic testing to classify lameness-associated pain in broilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.