Follistatin is known to antagonise the function of several members of the TGF-beta family of secreted signalling factors, including Myostatin, the most powerful inhibitor of muscle growth characterised to date. In this study, we compare the expression of Myostatin and Follistatin during chick development and show that they are expressed in the vicinity or in overlapping domains to suggest possible interaction during muscle development. We performed yeast and mammalian two-hybrid studies and show that Myostatin and Follistatin interact directly. We further show that single modules of the Follistatin protein cannot associate with Myostatin suggesting that the entire protein is required for the interaction. We analysed the interaction kinetics of the two proteins and found that Follistatin binds Myostatin with a high affinity of 5.84 x 10(-10) M. We next tested whether Follistatin suppresses Myostatin activity during muscle development. We confirmed our previous observation that treatment of chick limb buds with Myostatin results in a severe decrease in the expression of two key myogenic regulatory genes Pax-3 and MyoD. However, in the presence of Follistatin, the Myostatin-mediated inhibition of Pax-3 and MyoD expression is blocked. We additionally show that Myostatin inhibits terminal differentiation of muscle cells in high-density cell cultures of limb mesenchyme (micromass) and that Follistatin rescues muscle differentiation in a concentration-dependent manner. In summary, our data suggest that Follistatin antagonises Myostatin by direct protein interaction, which prevents Myostatin from executing its inhibitory effect on muscle development.
A reduction in muscle mass and strength is often observed with aging, and this phenomenon is known as sarcopenia. This age-related atrophy frequently correlates with insufficient levels of muscle regeneration resulting from impairment of satellite cell involvement and myogenesis brought about by the aged environment. Using myostatin-null mice, we recently showed that negative regulators of muscle mass such as myostatin play an active role in the regulation of myogenesis during aging. The present study specifically tests the therapeutic value of a myostatin antagonist in sarcopenia. We report here that a short-term blockade of myostatin, through stage-specific administration of a myostatin antagonist, significantly enhanced muscle regeneration in aged mice after injury and during sarcopenia. Antagonism of myostatin led to satellite cell activation, increased Pax7 and MyoD protein levels, and greater myoblast and macrophage cell migration, resulting in enhanced muscle regeneration after notexin injury in aged mice. In addition, the antagonist demonstrated a high degree of efficacy, as only minimal doses during the critical period of regeneration after injury were sufficient to restore the myogenic and inflammatory responses in the aged environment. Thus, we propose that the antagonism of myostatin has significant therapeutic potential in the alleviation of sarcopenia.
Twenty-four monozygous twinsets in late lactation (> 210 d in milk) were used to examine the effects of feed restriction and milking frequency prior to drying off on milk yield and composition in a pastoral dairying system. Cows were assigned to one of four treatment groups for 26 d and were milked either twice or once daily and given either unrestricted or restricted access to feed. Dry matter intakes averaged 16 or 8 kg per cow per day, and diets comprised ryegrass and white clover pasture supplemented with 15% pasture silage. Feed restriction and once daily milking reduced milk yield and increased concentrations of milk fat and protein. Somatic cell count was increased by feed restriction only. Production losses caused by feed restriction were nearly threefold higher than were those for once daily milking. Yields of components that were mammary synthesized and serum derived were reduced by feed restriction, in accordance with milk volume reduction. Plasma lactose concentration increased with once daily milking only and indicated enhanced permeability of mammary tight junctions. Both feed restriction and once daily milking compromised milk quality, but increased leakage of serum components into milk via mammary tight junctions was deemed to occur only for once daily milking.
Myostatin, a potent negative regulator of myogenesis, is proteolytically processed by furin proteases into active mature myostatin before secretion from myoblasts. Here, we show that mature myostatin auto-regulates its processing during myogenesis. In a cell culture model of myogenesis, Northern blot analysis revealed no appreciable change in myostatin mRNA levels between proliferating myoblasts and differentiated myotubes. However, Western blot analysis confirmed a relative reduction in myostatin processing and secretion by differentiated myotubes as compared to proliferating myoblasts. Furthermore, in vivo results demonstrate a lower level of myostatin processing during fetal muscle development when compared to postnatal adult muscle. Consequently, high levels of circulatory mature myostatin were detected in postnatal serum, while fetal circulatory myostatin levels were undetectable. Since Furin proteases are important for proteolytically processing members of the TGF-beta superfamily, we therefore investigated the ability of myostatin to control the transcription of furin and auto-regulate the extent of its processing. Transfection experiments indicate that mature myostatin indeed regulates furin protease promoter activity. Based on these results, we propose a mechanism whereby myostatin negatively regulates its proteolytic processing during fetal development, ultimately facilitating the differentiation of myoblasts by controlling both furin protease gene expression and subsequent active concentrations of mature myostatin peptide.
Myostatin, a secreted growth factor, is a key negative regulator of skeletal muscle growth. To identify modifiers of Myostatin function, we screened for Myostatin interacting proteins. Using a yeast two-hybrid screen, we identified Titin-cap (T-cap) protein as interacting with Myostatin. T-cap is a sarcomeric protein that binds to the N-terminal domain of Titin and is a substrate of the titin kinase. Mammalian two-hybrid studies, in vitro binding assays and protein truncations in the yeast two-hybrid system verified the specific interaction between processed mature Myostatin and full-length T-cap. Analysis of protein-protein interaction using surface plasmon resonance (Biacore, Uppsala, Sweden) kinetics revealed a high affinity between Myostatin and T-cap with a KD of 40 nM. When T-cap was stably overexpressed in C(2)C(12) myoblasts, the rate of cell proliferation was significantly increased. Western analyses showed that production and processing of Myostatin were not altered in cells overexpressing T-cap, but an increase in the retention of mature Myostatin indicated that T-cap may block Myostatin secretion. Bioassay for Myostatin confirmed that conditioned media from myoblasts overexpressing T-cap contained lower levels of Myostatin. Given that Myostatin negatively regulates myoblast proliferation, the increase in proliferation observed in myoblasts overexpressing T-cap could thus be due to reduced Myostatin secretion. These results suggest that T-cap, by interacting with Myostatin, controls Myostatin secretion in myogenic precursor cells without affecting the processing step of precursor Myostatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.