Kisspeptin is a key component of reproduction that directly stimulates GnRH neurons. However, recent studies indicate that kisspeptin can indirectly stimulate GnRH neurons through unidentified afferent networks. Neuropeptide Y (NPY) is another key reproductive hormone that is an afferent stimulator of GnRH neurons. Herein, we report kisspeptin receptor Kiss1r mRNA expression in native NPY neurons FAC-sorted from NPY-GFP transgenic mice. Thus, we hypothesized that kisspeptin indirectly stimulates GnRH neurons through direct regulation of NPY neurons. Using hypothalamic NPY-secreting cell lines, we determined that kisspeptin stimulates NPY mRNA expression and secretion in the mHypoE-38 cells, but not the mHypoE-42 cells, using quantitative RT-PCR and enzyme immunoassays. Furthermore, agouti-related peptide, ghrelin, neurotensin, or Kiss1r mRNA expression was not changed upon exposure to kisspeptin in either cell line. These results concur with our previous work identifying the mHypoE-38 cell line as a putative reproductive NPY neuron and the mHypoE-42 cell line as a potential feeding-related NPY neuron. In the mHypoE-38 cells, kisspeptin activated the ERK1/2 and p38 MAPK kinases as shown by Western blot analysis. Moreover, inhibiting the ERK1/2 and p38 pathways with U0126 and SB239063, respectively, prevented kisspeptin induction of NPY mRNA expression and secretion. Altogether, we find that kisspeptin directly regulates NPY synthesis and secretion via the ERK1/2 and p38 MAPK pathways in a NPY-secreting cell line, and we propose NPY neurons as an afferent network by which kisspeptin indirectly stimulates GnRH secretion. (Endocrinology 151: 5038 -5047, 2010)
Kisspeptin (Kiss) and G-protein-coupled receptor (Gpr)54 have emerged as key regulators of reproduction. 17β-estradiol (E2)-mediated regulation of these neurons is nuclei specific, where anteroventral periventricular (AVPV) Kiss neurons are positively regulated by E2, whereas arcuate nucleus (ARC) neurons are inhibited. We have generated immortalized Kiss cell lines from male and female adult-derived murine hypothalamic primary culture, as well as cell lines from microdissected AVPV and ARC from female Kiss-green fluorescent protein (GFP) mice. All exhibit endogenous Kiss-1 expression, estrogen receptors (ER)s (ERα, ERβ, and Gpr30), as well as known markers of AVPV Kiss neurons in the mHypoA-50 and mHypoA-Kiss/GFP-4, vs markers of ARC Kiss neurons in the mHypoA-55 and the mHypoA-Kiss/GFP-3 lines. There was an increase in Kiss-1 mRNA expression at 24 hours in the AVPV lines and a repression of Kiss-1 mRNA at 4 hours in the ARC lines. An E2-mediated decrease in ERα mRNA expression at 24 hours in the AVPV cell lines was detected, and a significant decrease in Gpr30, ERα, and ERβ mRNA levels at 4 hours in the ARC cell lines was evident. ER agonists and antagonists determined the specific ERs responsible for mediating changes in gene expression. In the AVPV, ERα is required but not ERβ or GPR30, vs the ARC Kiss-expressing cell lines that require GPR30, and either ERα and/or ERβ. We determined cAMP response element-binding protein 1 was necessary for the down-regulation of Kiss-1 mRNA expression using small interfering RNA knockdown in the ARC cell model. These studies elucidate some of the molecular events involved in the differential E2-mediated regulation of unique and specific Kiss neuronal models.
Evidence shows that neuropeptide Y (NPY) neurons are involved in mediating the anorexigenic action of leptin via neuronal circuits in the hypothalamus. However, studies have produced limited data on the cellular processes involved and whether hypothalamic NPY neurons are susceptible to cellular leptin resistance. To investigate the direct regulation of NPY secretion by leptin, we used novel NPY-synthesizing, immortalized mHypoA-NPY/green fluorescent protein and mHypoA-59 hypothalamic cell lines derived from adult hypothalamic primary cultures. We report that leptin treatment significantly suppressed NPY secretion in the cells by approximately 20%. We found a decrease in c-fos expression upon leptin exposure, indicating deactivation or hyperpolarization of the neurons. Protein analysis indicated that leptin inhibits AMP-activated protein kinase (AMPK) activity and activates acetyl-coenzyme A carboxylase in NPY neurons, supporting the hypothesis of an AMPK-dependent mechanism. Inhibiting both AMPK with Compound C or phosphatidylinositol 3 kinase (PI3K) with 2-(4-morpholinyl)-8-phenyl-1(4H)-1-benzopyran-4-one hydrochloride prevented the leptin-mediated decrease in NPY secretion, indicating both AMPK- and PI3K-mediated mechanisms. Further, NPY secretion was stimulated by 30% by the AMPK activator, aminoimidazole carboxamide ribonucleotide. Importantly, prolonged leptin exposure in the mHypoA-NPY/green fluorescent protein cells prevented leptin-induced changes in AMPK phosphorylation and suppression of NPY secretion, indicating that NPY neurons are susceptible to leptin resistance. Our studies indicate that AMPK and PI3K pathways are involved in leptin action in NPY neurons and that leptin resistance blocks the feedback response likely required to maintain energy homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.