VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a ''survival,'' rather than an ''angiogenic'' factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases.apoptosis ͉ vascular survival ͉ ocular neovascularization
In vivo, episcleral implants at the equator of the eye did not deliver a significant amount of Gd-DTPA into the vitreous, and no compound was identified in the posterior segment. A 30-fold increase in vitreous Gd-DTPA concentration occurred in the enucleated eyes, suggesting that there are significant barriers to the movement of drugs from the episcleral space into the vitreous in vivo. Dynamic three-dimensional MRI using Gd-DTPA, and possibly other contrast agents, may be useful in understanding the spatial relationships of ocular drug distribution and clearance mechanisms in the eye.
To investigate the pharmacokinetics and toxicity of intravitreal chemotherapeutic agents in the rabbit eye for the potential treatment of primary intraocular lymphoma and other intraocular malignancies. Methods:The ocular pharmacokinetics of intravitreal methotrexate sodium (400 µg) was studied in 10 New Zealand white rabbits, and a single-compartment, firstorder elimination model was used to calculate the drug half-life. With the use of these data, a treatment schedule using serial injections of intravitreal methotrexate and single injections of fluorouracil and dexamethasone sodium phosphate was developed. This schedule was studied in 4 New Zealand white rabbits to explore the combined toxicity of these agents.Results: Methotrexate vitreous levels, following a 400-µg intravitreal injection, remained therapeutic (Ͼ0.5µM) in the rabbit eye for 48 to 72 hours. Intravitreal methotrexate, combined with fluorouracil and dexamethasone, showed no evidence of drug toxicity as determined by electroretinography and histopathologic examination.Conclusions: A treatment schedule for primary intraocular lymphoma consisting of methotrexate intravitreal injections every 48 to 72 hours provides therapeutic drug concentrations in the vitreous and, in combination with fluorouracil and dexamethasone, appears to be safe in the rabbit eye.Clinical Relevance: Although responsive to conventional chemotherapy or radiotherapy, recurrence of ocular involvement with primary central nervous system lymphoma occurs in more than 50% of treated cases. Anecdotal reports of the use of intravitreal chemotherapy for primary intraocular lymphoma have been encouraging. However, animal data on the pharmacokinetics and toxicity of combined intravitreal agents for the treatment of this disease are lacking.
Ensuring optimum delivery of therapeutic agents in the eye requires detailed information about the transport mechanisms and elimination pathways available. This knowledge can guide the development of new drug delivery devices. In this study, we investigated the movement of a drug surrogate, Gd-DTPA (Magnevist) released from a polymer-based implant in rabbit vitreous using T1-weighted magnetic resonance imaging (MRI). Intensity values in the MRI data were converted to concentration by comparison with calibration samples. Concentration profiles approaching pseudosteady state showed gradients from the implant toward the retinal surface, suggesting that diffusion was occurring into the retinal-choroidal-scleral (RCS) membrane. Gd-DTPA concentration varied from high values near the implant to lower values distal to the implant. Such regional concentration differences throughout the vitreous may have clinical significance when attempting to treat ubiquitous eye diseases using a single positional implant. We developed a finite element mathematical model of the rabbit eye and compared the MRI experimental concentration data with simulation concentration profiles. The model utilized a diffusion coefficient of Gd-DTPA in the vitreous of 2.8 x 10(-6) cm2 s(-1) and yielded a diffusion coefficient for Gd-DTPA through the simulated composite posterior membrane (representing the retina-choroidsclera membrane) of 6.0 x 10(-8) cm2 s(-1). Since the model membrane was 0.03-cm thick, this resulted in an effective membrane permeability of 2.0 x 10(-6) cm s(-1). Convective movement of Gd-DTPA was shown to have minimal effect on the concentration profiles since the Peclet number was 0.09 for this system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.