The realization of high-performance tunable absorbers for terahertz frequencies is crucial for advancing applications such as single-pixel imaging and spectroscopy. Based on the strong position sensitivity of metamaterials' electromagnetic response, we combine meta-atoms that support strongly localized modes with suspended flat membranes that can be driven electrostatically. This design maximizes the tunability range for small mechanical displacements of the membranes. We employ a micro-electromechanical system technology and successfully fabricate the devices. Our prototype devices are among the best-performing tunable THz absorbers demonstrated to date, with an ultrathin device thickness (~1/50 of the working wavelength), absorption varying between 60% and 80% in the initial state when the membranes remain suspended, and fast switching speed (~27 μs). The absorption is tuned by an applied voltage, with the most marked results achieved when the structure reaches the snap-down state. In this case, the resonance shifts by 4200% of the linewidth (14% of the initial resonance frequency), and the absolute absorption modulation measured at the initial resonance can reach 65%. The demonstrated approach can be further optimized and extended to benefit numerous applications in THz technology.
We report the first planar waveguides made from mercury-cadmium-telluride (MCT)-a material to date exclusively used for mid-infrared (MIR) detector elements-serving as on-chip MIR evanescent field transducers in combination with tunable quantum cascade lasers (tQCLs) emitting in the spectral regime of 5.78-6.35 μm. This novel MIR sensing approach utilizes structured MCT chips fabricated via molecular beam epitaxy (MBE) as waveguide enabling sensing via evanescent field absorption spectroscopy, as demonstrated by the detection of 1 nL of acetone. Complementary finite difference time domain (FDTD) simulations fit well with the experimentally obtained data and predict an improvement of the limit of detection by at least 2 orders of magnitude upon implementation of thinner MCT waveguides. With the first demonstration of chemical sensing using on-chip MCT waveguides, monolithically fabricated IR sensing systems directly interfacing the waveguide with the MCT detector element may be envisaged.
Monitoring the nanomechanical movement of suspended cantilever structures has found use in applications ranging from biological/chemical sensing to atomic force microscopy. Interrogating these sensors relies on the ability to accurately determine the sub-nanometre movements of the cantilever. Here we investigate a technique based on the combination of integrated silicon photonics and microelectromechanical systems (MEMS) to create an optically resonant microcavity and demonstrate its use for monitoring of the position of cantilevers on the picometer scale under ambient conditions with dynamic range extending over several microns. The technique is interferometric, and we show it to be sufficiently sensitive to measure both the first and second modes of cantilever Brownian motion. We anticipate that application of this technique will provide a physically robust, picometer precision, integrated cantilever movement read-out technology which can take cantilever sensors from laboratory controlled environments into real world conditions, allowing everyday applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.