The Covid-19 European outbreak in February 2020 has challenged the world's health systems, eliciting an urgent need for effective and highly reliable diagnostic instruments to help medical personnel. Deep learning (DL) has been demonstrated to be useful for diagnosis using both computed tomography (CT) scans and chest X-rays (CXR), whereby the former typically yields more accurate results. However, the pivoting function of a CT scan during the pandemic presents several drawbacks, including high cost and cross-contamination problems. Radiation-free lung ultrasound (LUS) imaging, which requires high expertise and is thus being underutilised, has demonstrated a strong correlation with CT scan results and a high reliability in pneumonia detection even in the early stages. In this study, we developed a system based on modern DL methodologies in close collaboration with Fondazione IRCCS Policlinico San Matteo's Emergency Department (ED) of Pavia. Using a reliable dataset comprising ultrasound clips originating from linear and convex probes in 2908 frames from 450 hospitalised patients, we conducted an investigation into detecting Covid-19 patterns and ranking them considering two severity scales. This study differs from other research projects by its novel approach involving four and seven classes. Patients admitted to the ED underwent 12 LUS examinations in different chest parts, each evaluated according to standardised severity scales. We adopted residual convolutional neural networks (CNNs), transfer learning, and data augmentation techniques. Hence, employing methodological hyperparameter tuning, we produced state-of-the-art results meeting F1 score levels, averaged over the number of classes considered, exceeding 98%, and thereby manifesting stable measurements over precision and recall.
The early detection of skin cancer is of crucial importance to plan an effective therapy to treat the lesion. In routine medical practice, the diagnosis is based on the visual inspection of the lesion and it relies on the dermatologists’ expertise. After a first examination, the dermatologist may require a biopsy to confirm if the lesion is malignant or not. This methodology suffers from false positives and negatives issues, leading to unnecessary surgical procedures. Hyperspectral imaging is gaining relevance in this medical field since it is a non-invasive and non-ionizing technique, capable of providing higher accuracy than traditional imaging methods. Therefore, the development of an automatic classification system based on hyperspectral images could improve the medical practice to distinguish pigmented skin lesions from malignant, benign, and atypical lesions. Additionally, the system can assist general practitioners in first aid care to prevent noncritical lesions from reaching dermatologists, thereby alleviating the workload of medical specialists. In this paper is presented a parallel pipeline for skin cancer detection that exploits hyperspectral imaging. The computational times of the serial processing have been reduced by adopting multicore and many-core technologies, such as OpenMP and CUDA paradigms. Different parallel approaches have been combined, leading to the development of fifteen classification pipeline versions. Experimental results using in-vivo hyperspectral images show that a hybrid parallel approach is capable of classifying an image of 50 × 50 pixels with 125 bands in less than 1 s.
Several causes make brain cancer identification a challenging task for neurosurgeons during the surgical procedure. The surgeons' naked eye sometimes is not enough to accurately delineate the brain tumor location and extension due to its diffuse nature that infiltrates in the surrounding healthy tissue. For this reason, a support system that provides accurate cancer delimitation is essential in order to improve the surgery outcomes and hence the patient's quality of life. The brain cancer detection system developed as part of the ''HypErspectraL Imaging Cancer Detection'' (HELICoiD) European project meets this requirement exploiting a non-invasive technique suitable for medical diagnosis: the hyperspectral imaging (HSI). A crucial constraint that this system has to satisfy is providing a real-time response in order to not prolong the surgery. The large amount of data that characterizes the hyperspectral images, and the complex elaborations performed by the classification system make the High Performance Computing (HPC) systems essential to provide real-time processing. The most efficient implementation developed in this work, which exploits the Graphic Processing Unit (GPU) technology, is able to classify the biggest image of the database (worst case) in less than three seconds, largely satisfying the real-time constraint set to 1 minute for surgical procedures, becoming a potential solution to implement hyperspectral video processing in the near future.
The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18× when compared to a sequential implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.