a b s t r a c tThe force (F) and the power consumption (P) of a magnetic actuator are modeled, measured and optimized in the context of developing micro-actuators for large arrays, such as in portable tactile displays for the visually impaired. We present a novel analytical approach complemented with finite element simulation (FEM) and experiment validation, showing that the optimization process can be performed considering a single figure of merit F/ √ P. The magnetic actuator is a disc-shaped permanent magnet displaced by planar microcoil. Numerous design parameters are evaluated, including the width and separation of the coil traces, the trace thickness, number of turns and the maximum and minimum radius of the coil. We obtained experimental values of F/ √ P ranging from 2 to 12 mN/ √ W using up to 2-layer coils of both microfabricated and commercial printed circuit board (PCB) technologies. This performance can be further improved by a factor of two by adopting a 6-layer technology. The method can be applied to a wide range of electromagnetic actuators.
Validation of a technological process requires an intensive characterization of the performance of the resulting devices, circuits, or systems. The technology for the fabrication of micro and nanoelectromechanical systems (MEMS and NEMS) is evolving rapidly, with new kind of device concepts for applications like sensing or harvesting are being proposed and demonstrated. However, the characterization tools and methods for these new devices are still not fully developed. Here, we present an on-wafer, highly precise, and rapid characterization method to measure the mechanical, electrical, and electromechanical properties of piezoresistive cantilevers. The setup is based on a combination of probe-card and atomic force microscopy technology, it allows accessing many devices across a wafer and it can be applied to a broad range of MEMS and NEMS. Using this setup we have characterized the performance of multiple submicron thick piezoresistive cantilever force sensors. For the best design we have obtained a force sensitivity ℜF = 158μV/nN, a noise of 5.8 μV (1 Hz–1 kHz) and a minimum detectable force of 37 pN with a relative standard deviation of σr ≈ 8%. This small value of σr, together with a high fabrication yield >95%, validates our fabrication technology. These devices are intended to be used as bio-molecular detectors for the measurement of intermolecular forces between ligand and receptor molecule pairs.
We report the fabrication of silicon microcantilevers with MOSFET detection, to be used in force measurements for biomolecular detection. Thin cantilevers are required for a high force sensitivity. Therefore the source and drain of the transistors have been
Highly sensitive sensors are one of the enabling technologies for the biomarker detection in early stage diagnosis of pathologies. We have developed a self-sensing nanomechanical force probe able for detecting the unbinding of single couples of biomolecular partners in nearly physiological conditions. The embedding of a piezoresistive transducer into a nanomechanical cantilever enabled high force measurement capability with sub 10-pN resolution. Here, we present the design, microfabrication, optimization, and complete characterization of the sensor. The exceptional electromechanical performance obtained allowed us to detect biorecognition specific events underlying the biotin-avidin complex formation, by integrating the sensor in a commercial atomic force microscope.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.