The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa.
Pollinators face multiple pressures and there is evidence of populations in decline. As demand for insect-pollinated crops increases, crop production is threatened by shortfalls in pollination services. Understanding the extent of current yield deficits due to Manuscript
The rock-cut city of Vardzia is an example of the extraordinary rupestrian cultural heritage of Georgia. The site, Byzantine in age, was carved in the steep tuff slopes of the Erusheti mountains, and due to its peculiar geological characteristics, it is particularly vulnerable to weathering and degradation, as well as frequent instability phenomena. These problems determine serious constraints on the future conservation of the site, as well as the safety of the visitors. This paper focuses on the implementation of a site-specific methodology, based on the integration of advanced remote sensing techniques, such as InfraRed Thermography (IRT) and Unmanned Aerial Vehicle (UAV)-based Digital Photogrammetry (DP), with traditional field surveys and laboratory analyses, with the aim of mapping the potential criticality of the rupestrian complex on a slope scale. The adopted methodology proved to be a useful tool for the detection of areas of weathering and degradation on the tuff cliffs, such as moisture and seepage sectors related to the ephemeral drainage network of the slope. These insights provided valuable support for the design and implementation of sustainable mitigation works, to be profitably used in the management plan of the site of Vardzia, and can be used for the protection and conservation of rupestrian cultural heritage sites characterized by similar geological contexts.
Rock-carved cultural heritage sites are often developed in slopes formed by weak rocks, which due to their peculiar lithological, geotechnical, and morpho-structural features are characterized by excellent carvability, which at the same time makes them prone to weathering, deterioration, and slope instability issues. In this context the use of advanced close-range nondestructive techniques, such as Infrared Thermography (IRT) and Unmanned Aerial vehicle-based Digital Photogrammetry (UAV-DP) can be profitably used for the rapid detection of conservation issues (e.g., open fractures, unstable ledges-niches, water seepage and moisture) that can lead to slope instability phenomena. These techniques, when combined with traditional methods (e.g., field surveys, laboratory analysis), can provide fundamental data (such as 3D maps of the kinematic mechanisms) to implement a site-specific and interdisciplinary approach for the sustainable protection and conservation of such fragile cultural heritage sites. In this paper some examples of conservation problems in several rupestrian sites characterized by different geological contexts, from the mountainous regions of Georgia to the ancient city of Petra in Jordan, are presented, with the aim of evaluating the potential of the proposed integrated approach. The final aim is to provide conservators, practitioners, and local authorities with a useful, versatile, and low-cost methodology, to be profitably used in the protection and conservation strategies of rock-carved sites.
Situated between the Enguri and Khobistskali rivers, more than 30 settlement mounds (locally named Dikhagudzuba) provide evidence for a relatively densely populated landscape in the coastal lowlands of western Georgia during the Bronze Age. Compared to older mounds in eastern Georgia and other regions, these mounds differ not only in age but also in their average size and spatial distribution. Based on the interpretation of nine sediment cores, drone survey and structure‐from‐motion photogrammetry techniques, our study aims at (i) establishing a chronostratigraphic framework for the mounds based on 14C dating; (ii) reconstructing possible phases and gaps in human occupation; (iii) determining potential source areas of the mounds’ construction material; and (iv) identifying the environmental conditions at the time of their use. The three investigated mounds are similar in dimension and stratigraphy. Anthropogenic layers could clearly be identified and separated from the natural alluvial deposits below. According to the 14C age estimates, the mounds date to the first half of the 2nd millennium B.C.; this confirms the archaeological interpretation of their Bronze Age origin. While only one construction phase is assumed for two of the mounds, stratigraphic analysis suggests a successive enlargement of a third mound over at least 470 years. Paleoenvironmental conditions in the vicinity of the mounds were dominated by swampy, fluvial (channel) to alluvial (overbank) processes, as attested by river‐bank deposits and floodplain alluvium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.