Comparison of plate convergence with the timing and magnitude of upper crustal shortening in collisional orogens indicates both shortening deficits (200–1700 km) and significant (10–40%) plate deceleration during collision, the cause(s) for which remains debated. The Greater Caucasus Mountains, which result from postcollisional Cenozoic closure of a relict Mesozoic back‐arc basin on the northern margin of the Arabia‐Eurasia collision zone, help reconcile these debates. Here we use U‐Pb detrital zircon provenance data and the regional geology of the Caucasus to investigate the width of the now‐consumed Mesozoic back‐arc basin and its closure history. The provenance data record distinct southern and northern provenance domains that persisted until at least the Miocene. Maximum basin width was likely ~350–400 km. We propose that closure of the back‐arc basin initiated at ~35 Ma, coincident with initial (soft) Arabia‐Eurasia collision along the Bitlis‐Zagros suture, eventually leading to ~5 Ma (hard) collision between the Lesser Caucasus arc and the Scythian platform to form the Greater Caucasus Mountains. Final basin closure triggered deceleration of plate convergence and tectonic reorganization throughout the collision. Postcollisional subduction of such small (102–103 km wide) relict ocean basins can account for both shortening deficits and delays in plate deceleration by accommodating convergence via subduction/underthrusting, although such shortening is easily missed if it occurs along structures hidden within flysch/slate belts. Relict basin closure is likely typical in continental collisions in which the colliding margins are either irregularly shaped or rimmed by extensive back‐arc basins and fringing arcs, such as those in the modern South Pacific.
Relative ages of late Cenozoic stratigraphy throughout the Caspian region are referenced to regional stages that are defined by changes in microfauna and associated extreme (>1000 m) variations in Caspian base level. However, the absolute ages of these stage boundaries may be significantly diachronous because many are based on the first occurrence of either transgressive or regressive facies, the temporal occurrence of which should depend on position within a basin. Here, we estimate the degree of diachroneity along the Akchagyl regional stage boundary within the Caspian basin system by presenting two late Miocene‐Pliocene aged measured sections, Sarica and Vashlovani, separated by 50 km and exposed within the Kura fold‐thrust belt in the interior of the Kura Basin. The Kura Basin is a western subbasin of the South Caspian Basin and the sections presented here are located >250 km from the modern Caspian coast. New U‐Pb detrital zircon ages from the Sarica section constrain the maximum depositional age for Productive Series strata, a lithostratigraphic package considered correlative with the 2–3 Myr‐long regional Eoakchagylian or Kimmerian stage that corresponds to a period of extremely low (>500 m below the modern level) Caspian base level. This new maximum depositional age from the Productive Series at Sarica of 2.5 ± 0.2 Ma indicates that the regionally extensive Akchagyl transgression, which ended the deposition of the Productive Series near the Caspian coast at 3.2 Ma, may have appeared a minimum of 0.5 Myr later in the northern interior of the Kura Basin than at the modern Caspian Sea coast. The results of this work have important implications for the tectonic and stratigraphic history of the region, suggesting that the initiation of the Plio‐Pleistocene Kura fold‐thrust belt may have not been as diachronous along strike as previously hypothesized. More generally, these results also provide a measure of the magnitude of diachroneity possible along sequence boundaries, particularly in isolated basins. Comparison of accumulation rates between units in the interior of the Kura subbasin and the South Caspian main basin suggest that extremely large variations in these rates within low‐stand deposits may be important in identifying the presence of subbasins in older stratigraphic packages.
The Kolkheti lowlands (Colchis, Colchian plain) form the central part of the extensive coastal lowlands along the Black Sea coast of Georgia. Situated between the Greater and the Lesser Caucasus, favourable climatic conditions resulted in a constant human occupation of the region during the Holocene. However, due to continued deltaic sedimentation and alluviation of the river Rioni, the configuration and the environmental conditions of the coast and its hinterland have changed considerably; this was related to sea-level fluctuations of the Black Sea and variation of the sediment supply. This study presents new data on the Holocene coastal evolution of Western Georgia. Based on the geochemical and sedimentological analysis of sediment cores and trenches from the northern part of the Kolkheti lowlands, between the Black Sea and the rivers Rioni and Khobistsqali, and a robust chronology (14 C and IRSL dating), our goals are (i) to document the chronostratigraphy along two coring transects; (ii) to decipher geographical and environmental changes along Georgia's Black Sea coast; and (iii) to trace the sea-level evolution of the study area. Based on the succession of eight facies, representing different depositional environments, our results suggest that significant environmental changes took place throughout the last eight millennia. At least since 5000 cal BC, the sedimentary record indicates the widespread existence of shallow lagoons. Floodplain-related finegrained alluvium accumulated on top of the lagoonal stratum. The progradation of the delta plain between 3500 and 1500 cal BC was accompanied by the evolution of extensive swamps with peat formation. The data indicate a gradual and moderate sea-level rise since ~6000 BC. Ultimately, this and follow-up studies may provide a valuable background for the understanding of the palaeogeographical context of ancient settlements in the area.
The rock-cut city of Vardzia is an example of the extraordinary rupestrian cultural heritage of Georgia. The site, Byzantine in age, was carved in the steep tuff slopes of the Erusheti mountains, and due to its peculiar geological characteristics, it is particularly vulnerable to weathering and degradation, as well as frequent instability phenomena. These problems determine serious constraints on the future conservation of the site, as well as the safety of the visitors. This paper focuses on the implementation of a site-specific methodology, based on the integration of advanced remote sensing techniques, such as InfraRed Thermography (IRT) and Unmanned Aerial Vehicle (UAV)-based Digital Photogrammetry (DP), with traditional field surveys and laboratory analyses, with the aim of mapping the potential criticality of the rupestrian complex on a slope scale. The adopted methodology proved to be a useful tool for the detection of areas of weathering and degradation on the tuff cliffs, such as moisture and seepage sectors related to the ephemeral drainage network of the slope. These insights provided valuable support for the design and implementation of sustainable mitigation works, to be profitably used in the management plan of the site of Vardzia, and can be used for the protection and conservation of rupestrian cultural heritage sites characterized by similar geological contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.