Idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD), asthma and sleep disorders are chronic respiratory diseases that affect the airways, compromising lung function over time. These diseases affect hundreds of millions of people around the world and their frequency seems to be increasing every year. Extracellular vesicles (EVs) are small-sized vesicles released by every cell in the body. They are present in most body fluids and contain various biomolecules including proteins, lipids, mRNA and non-coding RNA (micro-RNA). The EVs can release their cargo, specifically micro-RNAs (miRNAs), to both neighboring and/or distal cells, playing a fundamental role in cell–cell communication. Recent studies have shown their possible role in the pathogenesis of various chronic respiratory diseases. The expression of miRNAs and, in particular, of miRNAs contained within the extracellular vesicles seems to be a good starting point in order to identify new potential biomarkers of disease, allowing a non-invasive clinical diagnosis. In this review we summarize some studies, present in the literature, about the functions of extracellular vesicles and miRNAs contained in extracellular vesicles in chronic respiratory diseases and we discuss the potential clinical applications of EVs and EVs-miRNAs for their possible use such as future biomarkers.
Background: Tennis is an intermittent sport, characterized by hundreds of repetitive explosive efforts, including accelerations, and jumps. A single match can last up to 5 hours and players are called to play several matches often separated by less than 48h of recovery. Objective: The study aimed to investigate the effects of a standardized tennis match on perceived fatigue and jump and sprint performances on a group of recreational tennis players and to observe if such variables were affected by residual effects of fatigue 24 hours after the match. Methods: Twelve recreational tennis players performed a 120 min match. Before, immediately after and 24h after the match, players completed a set of three countermovement jumps, three 10m sprints, and reported their perception of general fatigue. Results: Significant differences between the three conditions have been found for the perceived fatigue: indeed fatigue was higher both in the immediate post (F(1,10)= 54.422, η2 = 0.845, p<0.001) and 24h post-match (F(1,10)= 10.947, η2 = 0.523, p=0.08), with respect to the pre-match condition. No significant differences were detected in the other variables. Conclusion: During a tournament, the performance of tennis players may be weakened and the recovery prejudiced. To identify fluctuations of and factors linked to fatigue may help tennis practitioners to apply adequate recovery strategies with athletes, limiting performance decrements within a tournament, and indirectly preventing injuries.
MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. An aberrant regulation of gene expression by miRNAs is associated with numerous diseases, including cancer. MiRNAs expression can be influenced by various stimuli, among which hypoxia; however, the effects of different types of continuous hypoxia (moderate or marked) on miRNAs are still poorly studied. Lately, some hypoxia-inducible miRNAs (HRMs, hypoxia-regulated miRNAs) have been identified. These HRMs are often activated in different types of cancers, suggesting their role in tumorigenesis. The aim of this study was to evaluate changes in miRNAs expression both in moderate continuous hypoxia and marked continuous hypoxia to better understand the possible relationship between hypoxia, miRNAs, and colorectal cancer. We used RT-PCR to detect the miRNAs expression in colorectal cancer cell lines in conditions of moderate and marked continuous hypoxia. The expression of miRNAs was analyzed using a two-way ANOVA test to compare the differential expression of miRNAs among groups. The levels of almost all analyzed miRNAs (miR-21, miR-23b, miR-26a, miR-27b, and miR-145) were greater in moderate hypoxia versus marked hypoxia, except for miR-23b and miR-21. This study identified a series of miRNAs involved in the response to different types of continuous hypoxia (moderate and marked), highlighting that they play a role in the development of cancer. To date, there are no other studies that demonstrate how these two types of continuous hypoxia could be able to activate different molecular pathways that lead to a different expression of specific miRNAs involved in tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.