Summary: End-to-end next-generation sequencing microbiology data analysis requires a diversity of tools covering bacterial resequencing, de novo assembly, scaffolding, bacterial RNA-Seq, gene annotation and metagenomics. However, the construction of computational pipelines that use different software packages is difficult owing to a lack of interoperability, reproducibility and transparency. To overcome these limitations we present Orione, a Galaxy-based framework consisting of publicly available research software and specifically designed pipelines to build complex, reproducible workflows for next-generation sequencing microbiology data analysis. Enabling microbiology researchers to conduct their own custom analysis and data manipulation without software installation or programming, Orione provides new opportunities for data-intensive computational analyses in microbiology and metagenomics.Availability and implementation: Orione is available online at http://orione.crs4.it.Contact:
gianmauro.cuccuru@crs4.itSupplementary information:
Supplementary data are available at Bioinformatics online.
In Table 1 of this article, the ''cold-induced sweating'' row incorrectly contains a plus sign for individual CS_258 instead of a minus sign. That is, the authors did not observe cold-induced sweating for any individuals in the cohort with mutations in KLHL7. The authors apologize for the error and any confusion it may have caused.
Models of cardiac electrophysiology consist of a system of partial differential equations (PDEs) coupled with a system of ordinary differential equations representing cell membrane dynamics. Current software to solve such models does not provide the required computational speed for practical applications. One reason for this is that little use is made of recent developments in adaptive numerical algorithms for solving systems of PDEs. Studies have suggested that a speedup of up to two orders of magnitude is possible by using adaptive methods. The challenge lies in the efficient implementation of adaptive algorithms on massively parallel computers. The finite-element (FE) method is often used in heart simulators as it can encapsulate the complex geometry and small-scale details of the human heart. An alternative is the spectral element (SE) method, a high-order technique that provides the flexibility and accuracy of FE, but with a reduced number of degrees of freedom. The feasibility of implementing a parallel SE algorithm based on fully unstructured all-hexahedra meshes is discussed. A major computational task is solution of the large algebraic system resulting from FE or SE discretization. Choice of linear solver and preconditioner has a substantial effect on efficiency. A fully parallel implementation based on dynamic partitioning that accounts for load balance, communication and data movement costs is required. Each of these methods must be implemented on nextgeneration supercomputers in order to realize the necessary speedup. The problems that this may cause, and some of the techniques that are beginning to be developed to overcome these issues, are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.