Filter-based feature selection has become crucial in many classification settings, especially object recognition, recently faced with feature learning strategies that originate thousands of cues. In this paper, we propose a feature selection method exploiting the convergence properties of power series of matrices, and introducing the concept of infinite feature selection (Inf-FS). Considering a selection of features as a path among feature distributions and letting these paths tend to an infinite number permits the investigation of the importance (relevance and redundancy) of a feature when injected into an arbitrary set of cues. Ranking the importance individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. The Inf-FS has been tested on thirteen diverse benchmarks, comparing against filters, embedded methods, and wrappers; in all the cases we achieve top performances, notably on the classification tasks of PASCAL VOC 2007
Feature selection is playing an increasingly significant role with respect to many computer vision applications spanning from object recognition to visual object tracking. However, most of the recent solutions in feature selection are not robust across different and heterogeneous set of data. In this paper, we address this issue proposing a robust probabilistic latent graph-based feature selection algorithm that performs the ranking step while considering all the possible subsets of features, as paths on a graph, bypassing the combinatorial problem analytically. An appealing characteristic of the approach is that it aims to discover an abstraction behind low-level sensory data, that is, relevancy. Relevancy is modelled as a latent variable in a PLSA-inspired generative process that allows the investigation of the importance of a feature when injected into an arbitrary set of cues. The proposed method has been tested on ten diverse benchmarks, and compared against eleven state of the art feature selection methods. Results show that the proposed approach attains the highest performance levels across many different scenarios and difficulties, thereby confirming its strong robustness while setting a new state of the art in feature selection domain.
We propose a filtering feature selection framework that considers a subset of features as a path in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse setups with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-know yet effective comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process.-Index Terms-Feature selection, filter methods, Markov chains.
Roffo, G., Segalin, C., Vinciarelli, A., Murino, V., and Cristani, M. (2013) AbstractIdentity safekeeping has recently become an important problem for the social web: as a case study, we focus here on instant messaging platforms, proposing novel softbiometric cues for user recognition and verification. Specifically, we design a set of features encoding effectively how a person converses: since chats are crossbreeds of written text and face-to-face verbal communication, the features inherit equally from textual authorship attribution and conversational analysis of speech. Importantly, our cues ignore completely the semantics of the chat, relying solely on non-verbal aspects, taking care of possible privacy and ethical issues. We apply our approach on a novel dataset of 94 different individuals, whose chat conversations have been recorded for an average period of five months; recognition rate, intended as normalized AUC on CMC curve, is 95.73%, while verification rate amounts to 95.66%, as normalized AUC on ROC curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.