A simple process to obtain a slippery surface with anti-ice and ice-phobic properties has been developed and characterized in laboratory. The coating is realized by growing a nanostructured pseudo-boehmite on an aluminum substrate and applying an environmentally compatible final functionalization consisting of a fluorine-free oligomeric short-chain alkylfunctional silane. The resulting surface is conceptually similar to a slippery liquid infused porous surface (SLIP) material, but the porous infrastructure is inorganic and the process to generate it is very simple, rapid and economic. The coating performance in terms of hydrophobicity at room and low temperatures, ice nucleation temperature and ice adhesion forces were assessed in laboratory. Moreover, hydrophobicity persistence was tested after prolonged immersion in acid, basic and saline solutions while the durability of ice-phobic behavior was assessed by repeated shear stress tests. Results are compared with those of a superhydrophobic hierarchical aluminum surface obtained with a fluorinated siloxane. The novel coating shows very good anti-ice properties and relevant durability, with some differences from the fluorinated surface. The novel slippery coating process is promising for industrial applications, also taking into account its environmental compatibility, simplicity and low cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.