Food packaging is not only a simple protective barrier, but a real “active” component, which is expected to preserve food quality, safety and shelf-life. Therefore, the materials used for packaging production should show peculiar features and properties. Specifically, antimicrobial packaging has recently gained great attention with respect to both social and economic impacts. In this paper, the results obtained by using a polymer material functionalized by a small synthetic peptide as “active” packaging are reported. The surface of Polyethylene Terephthalate (PET), one of the most commonly used plastic materials in food packaging, was plasma-activated and covalently bio-conjugated to a bactenecin-derivative peptide named 1018K6, previously characterized in terms of antimicrobial and antibiofilm activities. The immobilization of the peptide occurred at a high yield and no release was observed under different environmental conditions. Moreover, preliminary data clearly demonstrated that the “active” packaging was able to significantly reduce the total bacterial count together with yeast and mold spoilage in food-dairy products. Finally, the functionalized-PET polymer showed stronger efficiency in inhibiting biofilm growth, using a Listeria monocytogenes strain isolated from food products. The use of these “active” materials would greatly decrease the risk of pathogen development and increase the shelf-life in the food industry, showing a real potential against a panel of microorganisms upon exposure to fresh and stored products, high chemical stability and re-use possibility.
The commercialization of porgies or seabreams of the family Sparidae has greatly increased in the last decade, and some valuable species have become subject to seafood substitution. DNA regions currently used for fish species identification in fresh and processed products belong to the mitochondrial (mt) genes cytochrome b (Cytb), cytochrome c oxidase I (COI), 16S and 12S. However, these markers amplify for fragments with lower divergence within and between some species, failing to provide informative barcodes. We adopted comparative mitogenomics, through the analysis of complete mtDNA sequences, as a compatible approach toward studying new barcoding markers. The intent is to develop a specific and rapid assay for the identification of the common pandora Pagellus erythrinus, a sparid species frequently subject to fraudulent replacement. The genetic diversity analysis (Hamming distance, p-genetic distance, gene-by-gene sequence variability) between 16 sparid mtDNA genomes highlighted the discriminating potential of a 291 bp NAD2 gene fragment. A pair of species-specific primers were successfully designed and tested by end-point and real-time PCR, achieving amplification only in P. erythrinus among several fish species. The use of the NAD2 barcoding marker provides a rapid presence/absence method for the identification of P. erythrinus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.