We have investigated solution-processed tungsten-doped crystalline indium oxide (In2O3:W) as a function of the W content and their implementation in TFTs also employing spray coated Y2O3 gate dielectrics, and gold source and drain contacts. We showed that tungsten doping practically has no effect on the optical band gap whereas it shifts up the Urbach tail energy of In2O3:W films. The TFT performance employing In2O3:W channels also seems to decline at high tungsten concentration. Negative and positive bias stress under (dark) ambient conditions of TFTs employing In2O3:W(0.1 at%) showed remarkable improvement in their stability characteristics compared to the un-doped ones. This is evidenced by significantly smaller changes of the threshold voltage and subthreshold swing with insignificant change of the electron mobility that was practically unaffected under negative bias voltage. The negative bias stress results were interpreted in terms of the higher W-O bond dissociation energy compared a)
This work investigates a solution process for yttria-stabilized zirconia (YSZ) thin film deposition involving the addition of yttria nanoparticles, at 400 °C, in air. Different yttrium doping levels in the YSZ were studied and a wide range of optical, structural, surface, dielectric, and electronic transport properties were also investigated. An optimum yttrium doping level of 5% mol. resulted in the smoothest films (RRMS ∼ 0.5 nm), a wide bandgap (∼5.96 eV), a dielectric constant in excess of 26, and a leakage current of ∼0.3 nA cm−2 at 2 MV/cm. The solution-processed YSZ films were incorporated as gate dielectrics in thin films transistors with solution-processed In2O3 semiconducting channels. Excellent operational characteristics, such as negligible hysteresis, low operational voltages (5 V), electron mobility in excess of 36 cm2 V−1 s−1, high on/off current modulation ratio on the order of 107, and low interfacial trap density states (<1012 cm−2), were demonstrated. In addition, excellent film homogeneity was achieved over a large area (16 × 16 cm2), with both film thickness and capacitance deviation of <1.2%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.