Ubiquitin-specific peptidase 8 (USP8) is a deubiquitinating enzyme that works as a regulator of endosomal sorting and vesicle morphology in cultured cells. Its function in vivo is, however, unknown as USP8 gene deletion leads to embryonic lethality. Previously, we have shown that USP8 is highly expressed in male germ cells. These cells develop a peculiar acidic vesicle that is indispensable for fertilization, the acrosome; USP8 might be involved in vivo in acrosomogenesis. The objective of this study was to test this hypothesis by determining if selective components of the early endosomal machinery interact functionally with USP8 during acrosomogenesis using protein-protein interaction assays and double/triple immunolabeling. Moreover, by exploiting the characteristic of USP8 that exhibits a microtubule interacting and trafficking/transport (MIT) domain, we verified whether USP8 effectively associates with spermatid microtubules by microtubule cosedimentation and binding assays. USP8 was able to interact with spermatid ESCRT-0 (endosomal-sorting complex required for transport-0) and microtubule structures; USP8/ESCRT-0-labeled vesicles, monitored by fluorescence microscopy, were found to contribute to acrosome formation while USP8 can directly link, via its MIT domain, the labeled vesicles/developing acrosome to microtubules, which could favor both acrosome assembly and shaping. VPS54, the vacuolar-sorting protein responsible for early endocytic retrograde transport, was here detected for the first time in male germ cells; VPS54 followed the intracellular route of USP8/ESCRT-0-labeled vesicles during acrosomogenesis. We concluded that in vivo USP8 has a role strongly associated with acrosome biogenesis and that the early endosome pathway is significantly involved in the process, which suggests that the acrosome could be a novel lysosome-related organelle.
We used yeast "two-hybrid" screening to isolate cDNA-encoding proteins interacting with the N-terminal domain of the Ras nucleotide exchange factor CDC25 Mm . Three independent overlapping clones were isolated from a mouse embryo cDNA library. The fulllength cDNA was cloned by RACE-polymerase chain reaction. It encodes a large protein (1080 amino acids) highly homologous to the human deubiquitinating enzyme hUBPy and contains a well conserved domain typical of ubiquitin isopeptidases. Therefore we called this new protein mouse UBPy (mUBPy). Northern blot analysis revealed a 4-kilobase mRNA present in several mouse tissues and highly expressed in testis; a good level of expression was also found in brain, where CDC25 Mm is exclusively expressed. Using a glutathione S-transferase fusion protein, we demonstrated an "in vitro" interaction between mUBPy and the N-terminal half (amino acids 1-625) of CDC25Mm . In addition "in vivo" interaction was demonstrated after cotransfection in mammalian cells. We also showed that CDC25 Mm , expressed in HEK293 cells, is ubiquitinated and that the coexpression of mUBPy decreases its ubiquitination. In addition the half-life of CDC25Mm protein was considerably increased in the presence of mUBPy. The specific function of the human homolog hUBPy is not defined, although its expression was correlated with cell proliferation. Our results suggest that mUBPy may play a role in controlling degradation of CDC25 Mm , thus regulating the level of this Ras-guanine nucleotide exchange factor. Ras-guanine nucleotide exchange factors (GEFs)1 are proteins that stimulate the exchange of guanine nucleotides (GDP/ GTP) on Ras proteins. We have previously cloned a mouse brain-specific Ras-GEF, called CDC25Mm (1-2) or Ras-GRF1. CDC25Mm is a large protein (140 kDa) that contains a Rasexchange domain in the C-terminal region and several different domains in the large N-terminal region, namely two PH (pleckstrin homology) domains, one DH (Dbl homology) domain, and an illimaquinone (IQ) domain (2-3). In addition a coiled-coil region and a PEST sequence were identified (4).Several evidences indicate that the large N-terminal region of CDC25Mm has a regulatory function and may interact with other cellular components. We have previously shown that the expression in mouse fibroblasts of a truncated form of CDC25 Mm , lacking the Ras exchange domain, behaves as a dominant negative protein (5). In addition PH domains could interact with phospholipids (6) and with the ␥ subunits of heterotrimeric G proteins (7), whereas the IQ domain binds calmodulin (3,8) and is thought to be responsible for the activation of GEF activity by calcium (3). Further evidence that the N-terminal region of CDC25Mm protein is involved in specific protein interaction(s) also comes from the work of Kiyono et al. (9) in which it was shown that CDC25 Mm /Ras-GRF1 was able to activate Rac1 and that for this activity a functional DH domain is required. Moreover the DH domain was required for homodimerization of Ras-GRF1 or for heterodi...
The guanosine trisphosphatase Rap1 serves as a critical player in signal transduction, somatic cell proliferation and differentiation, and cell-cell adhesion by acting through distinct mechanisms. During mouse spermiogenesis, Rap1 is activated and forms a signaling complex with its effector, the serine-threonine kinase B-Raf. To investigate the functional role of Rap1 in male germ cell differentiation, we generated transgenic mice expressing an inactive Rap1 mutant selectively in differentiating spermatids. This expression resulted in a derailment of spermiogenesis due to an anomalous release of immature round spermatids from the seminiferous epithelium within the tubule lumen and in low sperm counts. These spermiogenetic disorders correlated with impaired fertility, with the transgenic males being severely subfertile. Because mutant testis exhibited perturbations in ectoplasmic specializations (ESs), a Sertoli-germ cell-specific adherens junction, we searched for expression of vascular endothelial cadherin (VE-cadherin), an adhesion molecule regulated by Rap1, in spermatogenic cells of wild-type and mutant mice. We found that germ cells express VE-cadherin with a timing strictly related to apical ES formation and function; immature, VE-cadherin-positive spermatids were, however, prematurely released in the transgenic testis. In conclusion, interfering with Rap1 function during spermiogenesis leads to reduced fertility by impairment of germ-Sertoli cell contacts; our transgenic mouse provides an in vivo model to study the regulation of ES dynamics.
The acrosome is a unique organelle that plays an important role at fertilization and during sperm morphogenesis and that is absent in globozoospermia, an inherited infertility syndrome in humans. At the light of recent experimental evidence, the acrosome is considered a lysosome-related organelle to whose biogenesis both the endocytic and biosynthetic pathways contribute. Vps54 is a vesicular sorting protein involved in the retrograde traffic; the recessive Vps54(L967Q) mutation in the mouse results in the wobbler phenotype, characterized by motor-neuron degeneration and male infertility. Here we have investigated the spatio-temporal occurrence/progression of the wobbler fertility disorder starting from mice at post-natal day 35, the day of the first event of spermiation. We show that the pathogenesis of wobbler infertility originates at the first spermiogenetic wave, affecting acrosome formation and sperm head elongation. Vps54(L967Q)-labeled vesicles, on the contrary of the wild-type Vps54-labeled ones, are not able to coalesce into a larger vesicle that develops, flattens and shapes to give rise to the acrosome. Evidence that it is the malfunctioning of the endocytic traffic to hamper the development of the acrosome comes out from the study on UBPy. UBPy, a deubiquitinating enzyme, is a marker of acrosome biogenesis from the endocytic pathway. In wobbler spermatids UBPy-positive endosomes remain single, scattered vesicles that do not contribute to acrosome formation. As secondary defect of wobbler spermiogenesis, spermatid mitochondria are misorted; moreover, with the progression of the age/disease also Sertoli-germ cell adhesions are compromised suggesting a derailment in the endocytic route that underlies their restructuring.
The acrosome is a unique membranous organelle located over the anterior part of the sperm nucleus that is highly conserved throughout evolution. This acidic vacuole contains a number of hydrolytic enzymes that, when secreted, help the sperm penetrate the egg's coats. Although acrosome biogenesis is an important aspect of spermiogenesis, the molecular mechanism(s) that regulates this event remains unknown. Active trafficking from the Golgi apparatus is involved in acrosome formation, but experimental evidence indicates that trafficking of vesicles out of the Golgi also occurs during acrosomogenesis. Unfortunately, this second aspect of acrosome biogenesis remains poorly studied. In this article, we briefly discuss how the biosynthetic and endocytic pathways, assisted by a network of microtubules, tethering factors, motor proteins and small GTPases, relate and connect to give rise to the sperm-specific vacuole, with a particular emphasis placed on the endosomal compartment. It is hoped that this information will be useful to engage more studies on acrosome biogenesis by focusing attention towards suggested directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.