Tool condition monitoring (TCM) has become essential to achieve high-quality machining as well as cost-effective production. Identification of the cutting tool state during machining before it reaches its failure stage is critical. This paper presents a novel big data approach for tool wear classification based on signal imaging and deep learning. By combining these two techniques, the approach is able to work with the raw data directly, avoiding the use of statistical pre-processing or filter methods. This aspect is fundamental when dealing with large amounts of data that hold complex evolving features. The imaging process serves as an encoding procedure of the sensor data, meaning that the original time series can be re-created from the image without loss of information. By using an off-the-shelf deep learning implementation, the manual selection of features is avoided, thus making this novel approach more general and suitable when dealing with large datasets. The experimental results have revealed that deep learning is able to identify intrinsic features of sensory raw data, achieving in some cases a classification accuracy above 90%.
The new generation of ICT solutions applied to the monitoring, adaptation, simulation and optimisation of factories are key enabling technologies for a new level of manufacturing capability and adaptability in the context of Industry 4.0. Given the advances in sensor technologies, factories, as well as machine tools can now be sensorised, and the vast amount of data generated can be exploited by intelligent information processing techniques such as machine learning. This paper presents an online tool wear classification system built in terms of a monitoring infrastructure, dedicated to perform dry milling on steel while capturing force signals, and a computing architecture, assembled for the assessment of the flank wear based on deep learning. In particular, this approach demonstrates that a big data analytics method for classification applied to large volumes of continuously-acquired force signals generated at high speed during milling responds sufficiently well when used as an indicator of the different stages of tool wear. This research presents the design, development and deployment of the system components and an overall evaluation that involves machining experiments, data collection, training and validation, which, as a whole, has shown an accuracy of 78%.
Abstract-This paper proposes a character generation approach for the M.U.G.E.N. fighting game that can create engaging AI characters using a computationally cheap process without the intervention of the expert developer. The approach uses a Genetic Programming algorithm that refines randomly generated character strategies into better ones using tournament selection.The generated AI characters were tested by twenty-seven human players and were rated according to results, perceived difficulty and how engaging the gameplay was. The main advantages of this procedure are that no prior knowledge of how to code the strategies of the AI character is needed and there is no need to interact with the internal code of the game. In addition, the procedure is capable of creating a wide diversity of players with different strategic skills, which could be potentially used as a starting point to a further adaptive process.
With the current advances in the Internet of Things (IoT), smart sensors and Artificial Intelligence (AI), a new generation of condition monitoring solutions for smart manufacturing is starting to emerge. Computer Numerical Control (CNC) machines can now be sensorised and the vast amount of data generated can be processed using Machine Learning (ML) techniques. These can provide insights about the condition of the machine or tool in real-time, which can then be used by decision makers. This is fundamental in order to reach a new level of manufacturing capabilities in the context of Industry 4.0 (Lasi et al, 2014). Most current monitoring solutions rely on the off-line generation of models before they can be used online. This is not ideal when the data holds complex evolving features. There is a lack of approaches that are capable of determining what to learn and when to learn. This paper presents preliminary results on a new deep learning approach based on Bayesian Convolutional Neural Networks (BCNN) for online tool condition classification. Based on the uncertainty of the model, the proposed approach can determine using an entropy acquisition function if the incoming data cannot be classified, and therefore needs to be labelled and used for re-training. This constitutes the first step towards an online active learning tool condition monitoring approach. We demonstrate using a machine tool data set that the active learning approach can achieve similar accuracy of a deterministic Convolutional Neutral Network (CNN) with a smaller training data set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.