Starch and chitosan are widely used for preparation of edible films that are of great interest in food preservation. This work was aimed to analyze the relationship between structural and physical properties of edible films based on a mixture of chitosan and modified starches. In addition, films were tested for antimicrobial activity against Listeria innocua. Films were prepared by the casting method using chitosan (CT), waxy (WS), oxidized (OS) and acetylated (AS) corn starches and their mixtures. The CT-starches films showed improved barrier and mechanical properties as compared with those made from individual components, CT-OS film presented the lowest thickness (74 ± 7 µm), water content (11.53% ± 0.85%, w/w), solubility (26.77% ± 1.40%, w/v) and water vapor permeability ((1.18 ± 0.48) × 10−9 g·s−1·m−1·Pa−1). This film showed low hardness (2.30 ± 0.19 MPa), low surface roughness (Rq = 3.20 ± 0.41 nm) and was the most elastic (Young’s modulus = 0.11 ± 0.06 GPa). In addition, films made from CT-starches mixtures reduced CT antimicrobial activity against L. innocua, depending on the type of modified starch. This was attributed to interactions between acetyl groups of AS with the carbonyl and amino groups of CT, leaving CT with less positive charge. Interaction of the pyranose ring of OS with CT led to increased OH groups that upon interaction with amino groups, decreased the positive charge of CT, and this effect is responsible for the reduced antimicrobial activity. It was found that the type of starch modification influenced interactions with chitosan, leading to different films properties.
It is well known that an effective way to improve the quality attributes of food is the use of coatings. Moreover, there is evidence of the use of dairy byproducts to design coatings to improve the shelf life of food products. This study was conducted to explore the effectiveness of a film forming solution containing whey protein–pectin complex enzymatically reticulated by transglutaminase (TGase) applied as a coating on eggshells to preserve the internal quality of eggs stored under environmental conditions (25 ± 1 °C and 35% HR) during 15 days storage. Eggs properties tested included yolk index, albumen and yolk pH, albumen CO2 content, water loss, shell strength, and microbial permeability through the shell. The results showed that the coating maintained a higher yolk index and albumen carbon dioxide content, reduced the weight loss and increased both albumen and yolk pH values with respect to the uncoated eggs. All coated eggshells showed greater strength than those of uncoated eggs. Moreover, by using Blue Lake dye penetration method we demonstrated that the coating reduced the Blue Lake dye penetration confirming the effectiveness of the coating on the reduction of post-wash bacterial penetration. These results suggest that the studied coating can be useful to preserve internal egg quality but also to reduce the breakage of eggshell and egg microbial contamination. Based on this result we can conclude that the coating made with whey protein–pectin crosslinked by TGase could be an effective strategy to increase the shelf life of eggs preserved in environmental conditions and to reduce economic losses due to the eggs breakage during their marketing.
BACKGROUND: An active packaging film based on whey protein isolate (WPI) was developed by incorporating nisin to promote microbial food safety. The effect of temperature and pH on the release of nisin from edible films of different thickness was investigated. The film mechanical properties and inhibitory effect were also evaluated.
Edible coatings are a viable alternative method to enhance food shelf life that can be designed using different biopolymers. This study evaluated the effect of a whey protein–pectin coating reticulated by microbial transglutaminase (mTG) on improving roasted peanuts’ shelf life. Peroxide value, water content, peanut color, and the solution’s contact angle were studied. The latter was improved by the presence of the enzyme. The results showed that the presence of the coating on the peanut surface reduces the peroxide value and water content, probably as a consequence of an improved barrier effect due to the presence of mTG, which protects the kernel. Enzymatically reticulated whey protein–pectin coatings are a promising alternative to enhance the shelf life of roasted peanut kernels using natural ingredients.
Nanoemulsions are feasible delivery systems of lipophilic compounds, showing potential as edible coatings with enhanced functional properties. The aim of this work was to study the effect of emulsifier type (stearic acid (SA), Tween 80 (T80) or Tween 80/Span 60 (T80/S60)) and emulsification process (homogenization, ultrasound or microfluidization) on nanoemulsion formation based on oxidized corn starch, beeswax (BW) and natural antimicrobials (lauric arginate and natamycin). The response variables were physicochemical properties, rheological behavior, wettability and antimicrobial activity of BW–starch nanoemulsions (BW–SN). The BW–SN emulsified using T80 and microfluidized showed the lowest droplet size (77.6 ± 6.2 nm), a polydispersion index of 0.4 ± 0.0 and whiteness index (WI) of 31.8 ± 0.8. This BW–SN exhibited a more negative ζ-potential: −36 ± 4 mV, and Newtonian flow behavior, indicating great stability. BW–SN antimicrobial activity was not affected by microfluidization nor the presence of T80, showing inhibition of the deteriorative fungi R. stolonifer, C. gloeosporioides and B. cinerea, and the pathogenic bacterium S. Saintpaul. In addition, regardless of emulsifier type and emulsification process, BW–SN applied on the tomato surface exhibited low contact angles (38.5° to 48.6°), resulting in efficient wettability (−7.0 mN/m to −8.9 mN/m). These nanoemulsions may be useful to produce edible coatings to preserve fresh-produce quality and safety.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.