We report the design in CMOS technology and the experimental characterization of an analog spiking neural network with on-chip unsupervised learning. Long-term synaptic memory is implemented using a floating-gate device in a standard 150 nm CMOS process. The neurons are operated with a voltage supply of only 0.4V, allowing an extremely low power dissipation with an energy dissipation per synaptic operation of about 55 fJ. The CMOS chip includes the circuits for implementing real-time learning of the network based on the Spike Time Dependent Plasticity algorithm. During the learning, the neurons produce pulses of ±4.5 V that change the synaptic weight by activating tunneling currents to change the charge in the floating gates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.