Leptin communicates nutritional status to regulatory centers in the brain. Because peripheral leptin influences the activity of the highly pulsatile adrenal and gonadal axes, we sought to determine whether leptin levels in the blood are pulsatile. We measured circulating leptin levels every 7 minutes for 24 hours, in six healthy men, and found that total circulating leptin levels exhibited a pattern indicative of pulsatile release, with 32.0 +/- 1.5 pulses every 24 hours and a pulse duration of 32.8 +/- 1.6 minutes. We also show an inverse relation between rapid fluctuations in plasma levels of leptin and those of adrenocorticotropic hormone (ACTH) and cortisol that could not be accounted for on the basis of glucocorticoid suppression of leptin. As leptin levels are pulsatile, we propose that a key function of the CNS is regulated by a peripheral pulsatile signal. In a separate pilot study we compared leptin pulsatility in 414 plasma samples collected every 7 minutes for 24 hours from one obese woman and one normal-weight woman. We found that high leptin levels in the obese subject were due solely to increased leptin pulse height; all concentration-independent pulsatility parameters were almost identical in the two women. Leptin pulsatility therefore can be preserved in the obese.
Thinness (low percentage of body fat, low body mass index [BMI], or low body weight) was evaluated as a risk factor for low bone mineral density (BMD) or increased bone loss in a randomized trial of alendronate for prevention of osteoporosis in recently postmenopausal women with normal bone mass (n = 1609). The 2-year data from the placebo group were used (n = 417). Percentage of body fat, BMI, and body weight were correlated with baseline BMD (r = −0.13 to −0.43, p < 0.01) and 2-year bone loss (r = −0.14 to −0.19, p < 0.01). Women in the lowest tertiles of percentage of body fat or BMI had up to 12% lower BMD at baseline and a more than 2-fold higher 2-year bone loss as compared with women in the highest tertiles (p ≤ 0.004). Women with a lower percentage of body fat or BMI had higher baseline levels of urine N-telopeptide cross-links (r = −0.24 to −0.31, p < 0.0001) and serum osteocalcin (r = −0.12 to −0.15, p < 0.01). To determine if the magnitude of treatment effect of alendronate was dependent on these risk factors, the group treated with 5 mg of alendronate was included (n = 403). There were no associations between fat mass parameters and response to alendronate treatment, which indicated that risk of low bone mass and increased bone loss caused by thinness could be compensated by alendronate treatment. In conclusion, thinness is an important risk factor for low bone mass and increased bone loss in postmenopausal women. Because the response to alendronate treatment is independent of fat mass parameters, prevention of postmenopausal osteoporosis can be equally achieved in thinner and heavier
In the last 50 years, the average self‐reported sleep duration in the United States has decreased by 1.5–2 hours in parallel with an increasing prevalence of obesity and diabetes. Epidemiological studies and meta‐analyses report a strong relationship between short or disturbed sleep, obesity, and abnormalities in glucose metabolism. This relationship is likely to be bidirectional and causal in nature, but many aspects remain to be elucidated. Sleep and the internal circadian clock influence a host of endocrine parameters. Sleep curtailment in humans alters multiple metabolic pathways, leading to more insulin resistance, possibly decreased energy expenditure, increased appetite, and immunological changes. On the other hand, psychological, endocrine, and anatomical abnormalities in individuals with obesity and/or diabetes can interfere with sleep duration and quality, thus creating a vicious cycle. In this review, we address mechanisms linking sleep with metabolism, highlight the need for studies conducted in real‐life settings, and explore therapeutic interventions to improve sleep, with a potential beneficial effect on obesity and its comorbidities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.