We have investigated the metabolic actions of recombinant human IGF-1 in mice genetically deficient of insulin receptors ( IR ϪրϪ ). After intraperitoneal administration, IGF-1 caused a prompt and sustained decrease of plasma glucose levels in IR ϪրϪ mice. Plasma free fatty acid concentrations were unaffected. Interestingly, the effects of IGF-1 were identical in normal mice ( IR ϩրϩ ) and in IR ϪրϪ mice. Despite decreased glucose levels, IR ϪրϪ mice treated with IGF-1 died within 2 Ϫ 3 d of birth, like sham-treated IR ϪրϪ controls. In skeletal muscle, IGF-1 treatment caused phosphorylation of IGF-1 receptors and increased the levels of the phosphatidylinositol-3-kinase p85 subunit detected in antiphosphotyrosine immunoprecipitates, consistent with the possibility that IGF-1 stimulates glucose uptake in a phosphatidylinositol-3-kinase-dependent manner. IGF-1 receptor phosphorylation and coimmunoprecipitation of phosphatidylinositol-3-kinase by antiphosphotyrosine antibodies was also observed in liver, and was associated with a decrease in mRNA levels of the key gluconeogenetic enzyme phosphoenolpyruvate carboxykinase. Thus, the effect of IGF-1 on plasma glucose levels may be accounted for by increased peripheral glucose use and by inhibition of hepatic gluconeogenesis. These data indicate that IGF-1 can mimic insulin's effects on glucose metabolism by acting through its own receptor. The failure of IGF-1 to rescue the lethal phenotype due to lack of insulin receptors suggests that IGF-1 receptors cannot effectively mediate all the metabolic actions of insulin receptors. ( J. Clin. Invest. 1997. 99:2538-2544.)
The most common cause of end stage renal disease is diabetic nephropathy. An early diagnosis may allow an intervention to slow down disease progression. Recently, it has been hypothesized that glutathione-S-transferase (GST) activity may be a marker of severity of chronic kidney disease. In particular, a lower GST activity is present in healthy subjects compared to patients with nephropathy. In the present review we illustrate the scientific evidence underlying the possible role of GST activity in the development of diabetic nephropathy and we analyze its usefulness as a possible early biomarker of this diabetic complication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.