The synthesis and the physico-chemical characterisation of a novel solid phase, designed for iron(iii) sorption, are presented. The solid (indicated in the following as DFO-SAMMS) is made with a hydroxamate siderophore, the deferoxamine (DFO), covalently bound on a self-assembled monolayer on mesoporous silica (SAMMS). The data demonstrate that the DFO molecules are bound to the solid material, grafted on the surface and do not enter the silica pores. A new one-pot synthesis is presented in which DFO is dissolved in DMSO, and left to react with GPTMS with stirring overnight. In the same mixture, SAMMS is added to get the final product. The optimisation of experimental conditions of this novel one-pot synthesis is presented, with results indicating that a temperature of 90 °C, for the reaction between DFO and GPTMS, and the use of MCM-41 silica are the most convenient conditions. The kinetics of sorption reveals that the iron uptake is relatively fast, around 100 min at pH = 2.5, and from the sorption profile of iron(iii), the estimated capacity of the product obtained under optimized conditions was higher than 0.3 mmol g(-1). The results found in the present research are very promising for application in real biological samples.
The reliable measurement of non-transferrin-bound iron (NTBI) in serum has proved to be difficult and generally time consuming. We have sought a simple and fast method for such a determination. We adopted a fluorescence assay and designed a fluorescent dye with a chelating agent attached to sense iron. To avoid autofluorescence from serum samples, the iron probes were linked to beads and the autofluorescence could be separated and excluded from the measurement by flow cytometry due to the size difference between beads and serum proteins. Fluorescent beads containing both fluorescent and chelating moieties have been synthesized. The nature of the chelating function has been systematically investigated using four different chelators: bidentate hydroxypyranone, bidentate hydroxypyridinone, hexadentate hydroxypyranone and hexadentate hydroxypyridinone, each with different iron affinity constants. Competition studies demonstrate that the hexadentate hydroxypyridinone-based beads are capable of scavenging most of low molecular mass and albumin-bound iron but negligible amounts of iron from transferrin and ferritin. Serum samples from 30 patients with different types of disease and normal volunteers were measured. The concentrations of NTBI fall in the range -0.41 to +6.5 μM. The data have been compared with those obtained from the traditional 'NTA' method.
Successful in vivo chelation treatment of iron(iii) overload pathologies requires that a significant fraction of the administered drug actually chelates the toxic metal. Increased mobilization of the iron(iii) in experiments on animals or humans, most often evaluated from urinary output, is usually used as an assessment tool for chelation therapy. Alternatively, the efficiency of a drug is estimated by calculating the complexing ability of a chelating agent towards Fe(iii). The latter is calculated by the pFe value, defined as the negative logarithm of the concentration of the free metal ion in a solution containing 10 μM total ligand and 1 μM total metal at a physiological pH of 7.4. In theory, pFe has to be calculated taking into account all the complexation equilibria involving the metal and the possible ligands. Nevertheless, complexation reactions in complex systems such as serum and urine may hardly be accurately modelled by computer software. The experimental determination of the bioavailable fraction of iron(iii) in biological fluids would therefore be of the utmost relevance in the clinical practice. The efficiency of the therapy could be more easily estimated as well as the course of overload pathologies. In this context, the aim of the present work was the development of a sensor to assess the free iron directly in biological fluids (urine) of patients under treatment with chelating agents. In the proposed device (DFO-MS), the strong iron chelator deferoxamine (DFO) is immobilized on the MCM-41 mesoporous silica. The characterization of the iron(iii) sorption on DFO-MS was undertaken, firstly in 0.1 M KNO3, then directly in urine samples, in order to identify the sorption mechanism. The stoichiometry of the reaction in the solid phase was found to be: with an exchange constant (average value) of log βex = 40(1). The application of DFO-MS to assess pFe in SPU (Simulating Pathology Urine) samples was also considered. The results obtained were very promising for a future validation and subsequent application of the sensor in samples of patients undergoing chelation therapy.
A reference material of a PM2.5-like atmospheric dust material has been prepared using a newly developed method. It is intended to certify values for the mass fraction of SO4 2−, NO3 −, Cl− (anions) and Na+, K+, NH4 +, Ca2+, Mg2+ (cations) in this material. A successful route for the preparation of the candidate reference material is described alongside with two alternative approaches that were abandoned. First, a PM10-like suspension was allowed to stand for 72 h. Next, 90% of the volume was siphoned off. The suspension was spiked with appropriate levels of the desired ions just prior to drop-wise shock-freezing in liquid nitrogen. Finally, freeze drying of the resulting ice kernels took place. In using this approach, it was possible to produce about 500 g of PM2.5-like material with appropriate characteristics. Fine dust in 150-mg portions was filled into vials under an inert atmosphere. The final candidate material approaches the EN12341 standard of a PM2.5-material containing the ions mentioned in Directive 2008/50/EC of the European Union. The material should be analysed using the CEN/TR 16269:2011 method for anions and cations in PM2.5 collected on filters. The method described here is a relatively rapid means to obtain large quantities of PM2.5. With access to smaller freeze dryers, still 5 to 10 g per freeze-drying cycle can be obtained. Access to such quantities of PM2.5-like material could potentially be used for different kinds of experiments when performing research in this field. Graphical abstractThe novelty of the method lies in transformation of a suspension with fine particulate matter to a homogeneous and stable powder with characteristics similar to air-sampled PM2,5. The high material yield in a relatively short time is a distinct advantage in comparison with collection of air-sampled PM2,5
A simple and rapid solid-phase spectrophotometric procedure to determine free Fe(III) in\ud environmental and biological samples is proposed. In particular, a deferoxamine (DFO) self\ud assembled monolayer on mesoporous silica (DFO SAMMS) is developed and here applied as\ud sensor for iron(III). The solid product became brownish when put in contact with iron(III)\ud solutions; so an immediate application as colorimetric sensor is considered. In order to\ud optimise the DFO SAMMS synthesis and to obtain the best product for iron(III) sensing, a\ud factorial experimental design is performed selecting the maximum absorption at 425 nm as\ud response. The robustness of the spectrophotometric method is also proved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.