The present paper extrapolates quantitative data for ozone virucidal activity on the basis of the available scientific literature data for a safe and effective use of ozone in the appropriate cases and to explore the safety measures developed under the stimulus of the current emergency situation. Ozone is a powerful oxidant reacting with organic molecules, and therefore has bactericidal, virucidal, and fungicidal actions. At the same time, it is a toxic substance, having adverse effects on health and safety. Its use is being proposed for the disinfection of workplaces’ and public places’ atmosphere, and for disposable masks and personal protective equipment disinfection for reuse, with particular reference to the COVID-19 pandemic outbreak. Ozone can be generated in situ by means of small, compact ozone generators, using dried ambient air as a precursor. It should be injected into the room that is to be disinfected until the desired ozone concentration is reached; after the time needed for the disinfection, its concentrations must be reduced to the levels required for the workers’ safety. The optimal use of ozone is for air and surface disinfection without human presence, using a concentration that is effective for the destruction of viruses, but not high enough to deteriorate materials.
With the aim of establishing exposure levels for hospital personnel preparing and administering cytostatic drugs (CDs), here, we present an innovative screening method based on the use of the desorption electrospray ionization (DESI) interface coupled with a hybrid quadrupole linear ion trap mass spectrometer. A rapid, simple, and sensitive procedure was developed for the simultaneous surface monitoring of cyclophosphamide, dacarbazine, methotrexate, vincristine, gemcitabine, and cytarabine. Since analytes were in the solid state, a novel approach based on the use of passive samplers was combined with the direct analysis of wipes. A PTFE-printed glass slide was used as a passive sampler, while hydrophobic centers of Swiffer® cloths were judged extremely efficient as wipe samplers. After the sampling period, the CD collectors were directly processed with the DESI-MS system without any further treatment. MS/MS confirmatory analysis was conducted using selected reaction monitoring in the positive ion mode and detection limits were evaluated. Values were at the picograms per square millimeter levels on the passive collector and at the picograms per square centimeter levels for the wipe ones. Direct determination on solid-state samples combined with mass spectrometry selectivity provided a powerful tool so far unapplied to occupational hygiene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.