PrefaceContemporary quantum mechanics meets an explosion of different types of quantization. Some of these quantization techniques (geometric quantization, deformation quantization, BRST quantization, noncommutative geometry, quantum groups, etc.) call into play advanced geometry and algebraic topology. These techniques possess the following main peculiarities.• Quantum theory deals with infinite-dimensional manifolds and fibre bundles as a rule.• Geometry in quantum theory speaks mainly the algebraic language of rings, modules, sheaves and categories.• Geometric and algebraic topological methods can lead to nonequivalent quantizations of a classical system corresponding to different values of topological invariants.Geometry and topology are by no means the primary scope of our book, but they provide the most effective contemporary schemes of quantization. At the same time, we present in a compact way all the necessary up to date mathematical tools to be used in studying quantum problems.Our book addresses to a wide audience of theoreticians and mathematicians, and aims to be a guide to advanced geometric and algebraic topological methods in quantum theory. Leading the reader to these frontiers, we hope to show that geometry and topology underlie many ideas in modern quantum physics. The interested reader is referred to extensive Bibliography spanning mostly the last decade. Many references we quote are duplicated in E-print arXiv (http://xxx.lanl.gov).With respect to mathematical prerequisites, the reader is expected to be familiar with the basics of differential geometry of fibre bundles. For the sake of convenience, a few relevant mathematical topics are compiled in Appendixes.
Geometry of symplectic and Poisson manifolds is well known to provide the adequate mathematical formulation of autonomous Hamiltonian mechanics. The literature on this subject is extensive.This book presents the advanced geometric formulation of classical and quantum non-relativistic mechanics in a general setting of time-dependent coordinate and reference frame transformations. This formulation of mechanics as like as that of classical field theory lies in the framework of general theory of dynamic systems, Lagrangian and Hamiltonian formalism on fibre bundles.Non-autonomous dynamic systems, Newtonian systems, Lagrangian and Hamiltonian non-relativistic mechanics, relativistic mechanics, quantum non-autonomous mechanics are considered.Classical non-relativistic mechanics is formulated as a particular field theory on smooth fibre bundles over the time axis R. Quantum nonrelativistic mechanics is phrased in the geometric terms of Banach and Hilbert bundles and connections on these bundles. A quantization scheme speaking this language is geometric quantization. Relativistic mechanics is adequately formulated as particular classical string theory of onedimensional submanifolds.The concept of a connection is the central link throughout the book. Connections on a configuration space of non-relativistic mechanics describe reference frames. Holonomic connections on a velocity space define nonrelativistic dynamic equations. Hamiltonian connections in Hamiltonian non-relativistic mechanics define the Hamilton equations. Evolution of quantum systems is described in terms of algebraic connections. A connection on a prequantization bundle is the main ingredient in geometric quantization. v vi PrefaceThe book provides a detailed exposition of theory of partially integrable and superintegrable systems and their quantization, classical and quantum non-autonomous constraint systems, Lagrangian and Hamiltonian theory of Jacobi fields, classical and quantum mechanics with time-dependent parameters, the technique of non-adiabatic holonomy operators, formalism of instantwise quantization and quantization with respect to different reference frames.Our book addresses to a wide audience of theoreticians and mathematicians of undergraduate, post-graduate and researcher levels. It aims to be a guide to advanced geometric methods in classical and quantum mechanics.For the convenience of the reader, a few relevant mathematical topics are compiled in Appendixes, thus making our exposition self-contained.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.