Charcot-Marie-Tooth disease (CMT), or hereditary motor and sensory neuropathy (HMSN), is a clinically and genetically heterogeneous condition. Mutations of the myelin protein zero (MPZ) gene have been associated with CMT1B, Dejerine-Sottas disease, and congenital hypomyelination, which are inherited demyelinating neuropathies characterized by different clinical severity. HMSN type II (HMSN II) or CMT2, the axonal form of CMT, is genetically heterogeneous. Linkage to 1p35-p36 (CMT2A), 3q (CMT2B), and 7p (CMT2D) chromosomes has been reported in the disease; however, most HMSN II families do not link to any of the reported loci. In a large HMSN II Sardinian family, we found a missense mutation in the chromosome 1q MPZ gene. This Ser44Phe mutation was located in exon 2 and was present in the heterozygous state in all affected individuals. This is the first example of an HMSN II family showing an MPZ point mutation. The MPZ gene Ser44Phe mutation found in the HMSN II family presented in this study suggests that genetic analysis of HMSN II families should also include the MPZ gene, previously not considered to be involved in the axonal form of HMSN.
BackgroundPompe’s disease is a progressive myopathy caused by mutations in the lysosomal enzyme acid alphaglucosidase gene (GAA). A wide clinical variability occurs also in patients sharing the same GAA mutations, even within the same family.MethodsFor a large series of GSDII patients we collected some clinical data as age of onset of the disease, presence or absence of muscular pain, Walton score, 6-Minute Walking Test, Vital Capacity, and Creatine Kinase. DNA was extracted and tested for GAA mutations and some genetic polymorphisms able to influence muscle properties (ACE, ACTN3, AGT and PPARα genes).We compared the polymorphisms analyzed in groups of patients with Pompe disease clustered for their homogeneous genotype.ResultsWe have been able to identify four subgroups of patients completely homogeneous for their genotype, and two groups homogeneous as far as the second mutation is defined “very severe” or “potentially less severe”. When disease free life was studied we observed a high significant difference between groups. The DD genotype in the ACE gene and the XX genotype in the ACTN3 gene were significantly associated to an earlier age of onset of the disease. The ACE DD genotype was also associated to the presence of muscle pain.ConclusionsWe demonstrate that ACE and ACTN3 polymorphisms are genetic factors able to modulate the clinical phenotype of patients affected with Pompe disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-014-0102-z) contains supplementary material, which is available to authorized users.
INTRODUCTION:The clinical course of late-onset Pompe disease is heterogeneous, and new clinical outcome measures are needed to evaluate enzyme replacement therapy (ERT).\ud METHODS:We correlated the 6-Minute Walk Test (6MWT), Walton and Gardner-Medwin (WGM) score, and GSGC (Gait, Stairs, Gower, Chair) scores in 40 patients.\ud RESULTS:At baseline, the GSGC score correlated with both WGM (P < 0.001, n = 33) and 6MWT (P < 0.001, n = 26). After 1 year of ERT, we observed a significant change in gait, stairs and chair performance on the GSGC scale. The 6MWT significantly increased from 319 to 371 meters in 32 patients, and the WGM score was reduced.\ud CONCLUSIONS:GSGC is a group of functional tests that requires only a few minutes to perform, therefore, this score might be a good indicator to be used in future studies
Charcot-Marie-Tooth (CMT) disease is the most common hereditary neuropathy resulting from mutations in 430 genes expressed in either the Schwann cells or the axon of peripheral nerves. The disease is classified into demyelinating (CMT1), axonal (CMT2) or intermediate (CMTI) based on electrophysiological and pathological findings. Our study focused on the identification of a novel disease mutation in a large Sardinian family with CMT2 of autosomal dominant (AD) inheritance. All available family members were clinically evaluated and samples were collected from consenting individuals. Initially, we excluded known CMT2 genes/loci in this family. We then conducted a genome-wide linkage analysis and mapped the gene to chromosome 9q33-q34. Refined linkage and haplotype analyses defined an 11.6-Mb candidate region with a maximum LOD score of 8.06. Following exclusion of several candidate genes from the region, we targeted the LRSAM1 (leucine-rich repeat and sterile alpha motif-containing 1) gene, very recently found to be associated with autosomal recessive CMT2 in one family. For a more efficient investigation of this large gene, already available proband RNA (cDNA) was initially analyzed. Targeted DNA analysis then confirmed a novel LRSAM1 splice-site (c.2047-1G4A) mutation, causing a frameshift that introduces a stop codon three amino acids further down the new reading frame (p.Ala683ProfsX3). This mutation is located in the C-terminal RING finger motif of the encoded protein and leads to premature truncation of the protein. In the course of our work, a second LRSAM1 mutation dominantly transmitted was identified by another group. Our data further confirms that LRSAM1 mutations are associated with CMT2 of AD inheritance.
This study represents the largest series of LGMD laminin α2-deficient patients and expands the clinical phenotype associated with LAMA2 mutations. The findings suggest that brain MRI could be included in the diagnostic work-up of patients with undiagnosed LGMD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.